Planning Board

Town of Mashpee

16 Great Neck Road North Mashpee, Massachusetts 02649

Meeting of the Mashpee Planning Board Wednesday, December 19, 2018 Waquoit Meeting Room, 7:00 P.M.

Call Meeting to Order: 7:00 p.m. – Waquoit Meeting Room – Mashpee Town Hall

Pledge of Allegiance

Approval of Minutes

Review and approval of meeting minutes from December 5, 2018.

Public Hearing /

7:10 PM – Road Renaming – Shields Road and Santuit Lane to Santuit Lane

This is the only roadway extending down the peninsula extending into Santuit Pond found on Assessor's Map 30. The Mashpee Fire Department has requested the road have a single name and retain its current one-way direction. This change will also change the address of houses along the renamed road.

7:20 PM - Bennett Environmental Associates for Windchime Condominium Trust

Consider an application to modify a special permit issued February 4, 1987 and recorded at the Barnstable County Registry of Deeds in Book 5734, Pages 225-269. Such application was made for consideration of the release of the escrow funds held under the Special Permit to make improvements to the on-site wastewater treatment system through the BRP WP 68 "Treatment Works Plan Approval" permitting process; and to seek reduction in the Wastewater Treatment Monitoring Plan as commensurate to the environmental monitoring requirements specified under the Groundwater Discharge Permit 263-3M1

New Business

- /• J Sign release of security held for 35 Fox Hill Road, LRME LLC.
 - Report from Consulting Engineer for 33 Trinity Place.
 - , APA Group Membership Dues Involce

Old Business

- Proposed revisions to the Light Industry Overlay District
- Proposals from the Town Planner on zoning by-law amendments: Temporary/Seasonal Signs and Donation Bins. Bins./
- Recission of vote of a minor modification to a special permit for a shared driveway at 659, 673, and 687 Main Street originally issued to Brett Field and Z&J Realty Trust on August 6, 2010 and recorded in Book 24822 Page 220 at the Barnstable County Registry of Deeds.
- Process to submit comments and materials to Planning Board for residents and local organizations.

Chairman's Report

- Selectmen's Discussion of Mashpee
- Guest Speakers

Board Member Committee Reports

 Cape Cod Commission, Community Preservation Committee, Design Review, Plan Review, Environmental Oversight Committee, Greenways/Quashnet Footbridge, Historic District Commission, MMR Military Civilian Community Council.

Updates from Town Planner

- Administrative Secretary hiring
- Evergreen Subdivision conservation restriction

Additional Topics (not reasonably anticipated by Chair)

MASHPEE TOWN CLERK

DEC 1 4 2018

Adjournment

RECEIVED BY

Daniel Marsters

10 Pleasantwood Drive

Forestdale, MA 02644

December 11, 2018

Mary Waygan, Chair

C/O Town Planner

16 Great Neck Road

Mashpee, MA 02649

RE: 583 Great Hay Road

Dear Ms. Waygan:

My name is Daniel Marsters and I am representing Anthony J. LaCava, Jr., Tr., owner of a vacant lot located at 583 Great Hay Road. I currently have the lot under agreement to purchase. During my research to determine buildability, I discovered that the Special Permit creating the lot had been modified because of a road layout change, thus changing the layout and size of the lot. A new plan was approved by the Planning Board on July 15, 1998, and recorded at the Town Clerk's Office on August 5, 1998. However, the plan was never recorded at the Registry of Deeds and the original plan cannot be located at any town office. I am seeking the Planning Board's guidance and assistance in remedying this situation.

Thank you for your time and consideration in this matter.

Sincerely,

Daniel Marsters

MASHPEE TOWN CLERK

DEC 1 1 2018 RECEIVED BY_____ contacted his civil engineer who said they could redraw plan to have it endorsed by the current board.

The information collected by my client clearly demonstrates that the modification to the original Special Permit Plan was approved by all appropriate town boards but was failed to be recorded, and no original was retained by any town board or staff.

Based on these facts, we are requesting that the current Planning Board endorse a new plan drawn by my client's civil engineer to be recorded at the Registry of Deeds. We are seeking the Planning Board's approval to do so before we incur the expense of drawing the plan.

My client, Mr. Marsters, is highly qualified to represent himself at the Board's meeting. He has been building and developing property in Mashpee for thirty years and has been a member and is a former Chairman of the Planning Board in the town of Sandwich. His breadth of knowledge and expertise in this area is unsurpassed.

Please place this matter on the Agenda for the next meeting on December 19, 2018.

Sincerely,

24.2

Bryan W. Reardon, Esq.

MASHPEE TOWN CLERK

DEC 1 2 2018

RECEIVED BY_____

Mashpee Planning Board Public Hearing Notice

Under the provisions of M.G.L. Chapter 85, Sections 3A and 3B, the Mashpee Planning Board will hold a public hearing on Wednesday, December 19, 2018 at 7:10 PM at the Mashpee Town Hall, 16 Great Neck Road North, Mashpee, MA to approve changing the names of SHIELDS AVENUE and SANTUIT LANE to SANTUIT LANE. This is the only roadway extending down the peninsula that extends into Santuit Pond found on Assessor's Map 30. The Mashpee Fire Department has requested the road have a single name and retain its current one-way direction. This change will also change the address of houses along the renamed road.

Per Order of

Mary E. Waygan, *Chair* Mashpee Planning Board

Publication Dates

Friday, November 30th Friday, December 7th

Town of Mashpee

16 Great Neck Road North Mashpee, Massachusetts 02649

NOTICE OF PUBLIC HEARING TO CONSIDER RENAMING SANTUIT LANE AND SHIELDS AVENUE TO SANTUIT LANE

November 30, 2018

Dear Mashpee Property Owner,

As the registered owner of a property located with a SANTUIT LANE or SHIELDS AVENUE address, you are being notified that the Mashpee Planning Board is holding a public hearing on <u>Wednesday</u>, <u>December 19, 2018 at 7:10 PM in the Waquoit Meeting Room, Mashpee Town Hall, 1st Floor, 16 Great</u> Neck Road North, 02649 to solicit comments regarding the following case:

Under the provisions of M.G.L. Chapter 85, Sections 3A and 3B, the Mashpee Planning Board will hold a public hearing to consider changing the names of SHIELDS AVENUE and SANTUIT LANE to SANTUIT LANE. This is the only roadway extending down the peninsula that extends into Santuit Pond found on Assessor's Map 30. The Mashpee Fire Department has requested the road have a single name and retain its current one-way direction. This change will also change the address of houses along the renamed road.

If you wish to provide comment but you are unable to appear before the Board you may submit comments to me in writing via the contact information provided below. Your comments will be entered into the public record for the Board's consideration. A map is attached to this letter for your consideration.

If you require any accommodations please submit requests to me via email, snail mail, or telephone prior to the specified date and time of the public hearing indicated herein, in legal advertisements in the Mashpee Enterprise, and posted in Town Hall.

Please do not hesitate to contact me by phone, email, or in person should you have questions about why you are receiving this notification.

Sincerely

Evan R. Lehrer, Town Planner <u>elehrer@mashpeema.gov</u> (508) 539-1400 x. 8521

Town of Mashpee

16 Great Neck Road North Mashpee, Massachusetts 02649

NOTICE OF PUBLIC HEARING TO CONSIDER MODIFICATION OF SPECIAL PERMIT FOR THE CLUSTER SUBDIVISION KNOWN AS WINDCHIME CONDOMINIUMS

November 30, 2018

Dear Mashpee Property Owner,

As the registered owner of a property located within 300' of the property identified above, you are being notified that the Mashpee Planning Board is holding a public hearing on <u>Wednesday, December</u> <u>19, 2018 at 7:20 PM in the Waquoit Meeting Room, Mashpee Town Hall, 1st Floor, 16 Great Neck Road</u> <u>North, 02649</u> to solicit comments regarding the following case:

Pursuant to Massachusetts General Laws Chapter 40A the Mashpee Planning Board will hold a public hearing on Wednesday, December 19, 2018 at 7:20 PM to consider an application made by Bennett Environmental Associates on behalf of Windchime Condominium Trust to modify a special permit issued February 4, 1987 and recorded at the Barnstable County Registry of Deeds in Book 5734, Pages 225-269. Such application was made for consideration of the release of the escrow funds held under the Special Permit to make improvements to the onsite wastewater treatment system through the BRP WP 68 "Treatment Works Plan Approval" permitting process; and to seek reduction in the Wastewater Treatment Monitoring Plan as commensurate to the environmental monitoring requirements specified under the Groundwater Discharge Permit 263-3M1

If you wish to provide comment but you are unable to appear before the Board you may submit comments to me in writing via the contact information provided below. Your comments will be entered into the public record for the Board's consideration.

If you require any accommodations please submit requests to me via email, snail mail, or telephone prior to the specified date and time of the public hearing indicated herein, in legal advertisements in the Mashpee Enterprise, and posted in Town Hall.

Please do not hesitate to contact me by phone, email, or in person should you have questions about why you are receiving this notification.

Sincerely

Evan R. Lehrer, Town Planner <u>elehrer@mashpeema.gov</u> (508) 539-1400 x. 8521

Mashpee Planning Board Public Hearing Notice

Pursuant to Massachusetts General Laws Chapter 40A the Mashpee Planning Board will hold a public hearing on Wednesday, December 19, 2018 at 7:20 PM to consider an application made by Bennett Environmental Associates on behalf of Windchime Condominium Trust to modify a special permit issued February 4, 1987 and recorded at the Barnstable County Registry of Deeds in Book 5734, Pages 225-269. Such application was made for consideration of the release of the escrow funds held under the Special Permit to make improvements to the on-site wastewater treatment system through the BRP WP 68 "Treatment Works Plan Approval" permitting process; and to seek reduction in the Wastewater Treatment Monitoring Plan as commensurate to the environmental monitoring requirements specified under the Groundwater Discharge Permit 263-3M1

Per Order of

Mary E. Waygan, *Chair* Mashpee Planning Board

Publication Dates

Friday, November 30th Friday, December 7th

			·	
			Received by	BOA:
STUDIE TOWN OF THE TOWN OF THE TOWN OF THE TOWN	TOWN OF MAS OF ASSE 16 Great Neck Rd North Phone # (508) Fax # (508) e-mail: assessing@	SSORS Mashpee, MA 02649 539-1404 539-1142	BOARD OF ASS NOV 19 BOARD OF ASS WAY OF MASH	2018 ESSORS PEE Updated: 3/7/2013
Please note		OR ABUTTE	RS LIST at within ten (10) business days	
	AP <u>75</u> PARCEL		All con plus	do unit: parcels h
ADDRESS OF SUBJE	CT PARCEL: <u>10</u>	Great Neik	Rd. 5 300	
PLEASE CHE (Re	CK THE TYPE OF A	BUTTERS LIST TH e regulating authority re	AT YOU ARE REQUEST equiring abutters list.)	ING:
DIRECT	ABUTTERS	Check box if this abu	tters list is for the Cape Cod C	ommission: 🗆
ALL PAR Historical Cor		FOOT RADIUS OF	SUBJECT (usual for Conserva	ion Commission 8
	CELS WITHIN A 300	FOOT RADIUS OF	SUBJECT	
			· •	FOT
ABUTTE	RS TO THE ABUTTE	RS WITHIN A 300	FOOT RADIUS OF SUBJ	ECT
OTHER (SPECIFY)		mma - Maanman - Kaman ah Mising - Mising Tala - aman ara ku bahar atau ing	
✓ ALL ABU	ITTERS LISTS ARE F	PRINTED WITH A M	AP ON 8 ½ x 11 PAPER	►.
 Standard mailing labe 	els of abutters are ava	ailable for an extra c	harge of \$1.00 per page.	(full or partial
LABELS YES	(YES or NO) NU	MBER OF SETS O	LABELS 3	•
REQUESTED BY:	NAME:	TOWNELOF ALLOY	r.r	
(PLEASE PRINT)	ADDRESS:	TOWN OF MASHP PLANNING DEPAR 16 GREAT NECK F	TMENT	
	PHONE:	MASHPEE MA 026		~
			Sig	
date: <u>11/19/2</u>	018	SIGNATURE: _	$\Box \gamma \gamma$	
FEES: BASIC ABUTTERS	· · · · ·	QUANTITY \$5		
FEES: BASIC ABUTTERS MAILING LABELS	5	QUANTITY \$5 10 \$1	.00 .00 PER PAGE 0.00 - \$50.00 (varies by proc	essing time)
FEES: BASIC ABUTTERS	5 TERS LIST (multiple subjec To CPO TOTAL AMOU	QUANTITY \$5 10 \$1	00 PER PAGE 0.00 – \$50.00 (varies by proc	essing time)

Key	Parcel ID	Owner	Localion	Mailing Street	Mailing City	ST 7	ipCd/Country
	75-11-7-R	BAGGETT, WALTER O & SHORTRIDGE BAGGETT, LILLIE M	7 BOBWHITE CRESCENT	7 BOBWHITE CRESCENT	MASHPEE	MA	02649-3560
5561	75-11-8-R	DREA, NANCY A TR DREA FAMILY REALTY TRUST	8 BOBWHITE CRESCENT	8 BOBWHITE CRESCENT	MASHPEE	MA	.02649
5562	75-11-9-R	CHRISTMAN, KATHERINE	9 BOBWHITE CRESCENT	PO BOX 471	FALMOUTH	MA	02541
5563	75-11-10-R	PROOS, EILEEN	10 BOBWHITE CRESCENT	10 BOBWHITE CRESCENT	MASHPEE	MA	02649
5564	75-11-11-R	TRACZYK, ARTHUR P TR	11 BOBWHITE CRESCENT	11 BOBWHITE CRESCENT	MASHPEE	MA	02649
5565	75-11-12-R	JONAH, MICHAEL H & SHERYL J	12 BOBWHITE CRESCENT	229 MILLBROOK DRIVE	EAST LONGMEADOW	MA	01028
5566	75-11-13-R	LAGRIPPE, ANNE M	13 BOBWHITE CRESCENT	13 BOBWHITE CRESCENT	MASHPEE	MA	02649
5567	75-11-14-R	DEBARROS, DOMINGO K & DIOSA A	14 BOBWHITE CRESCENT	14 BOBWHITE CRESCENT	MASHPEE	MA	02649
16405	75-11-15-R	HARTNETT, GAIL C C/O HARTNETT, GAIL C ET AL TRS	84 BLUE SPRUCE WAY	84 BLUE SPRUCE WAY	MASHPEE	MA	02649
16406	75-11-16-R	ELD, ALICE R	82 BLUE SPRUCE WAY	82 BLUE SPRUCE WAY	MASHPEE	MA	02649
16407	75-11-17-R	LIFE ESTATE SAVIOLI, FRANCES M	80 BLUE SPRUCE WAY	PO BOX 2293	MASHPEE	MA	02649
16408	75-11-18-R	CONNOLLY, FRANK R & SHEILA C	78 BLUE SPRUCE WAY	78 BLUE SPRUCE WAY	MASHPEE	MA	02649
16409	75-11-19-R	LIFE ESTATE FEBEO, KAREN L	76 BLUE SPRUCE WAY	53 GLENHAM STREET	WEST ROXBURY	MA	02132
16410	75-11-20-R	JAYES, ROBERT L & DOROTHY J TR C/O SHULTZ, DIANE M ET AL	74 BLUE SPRUCE WAY	322 LOCUST LANE	MOUNT JOY	PA	17552
16411	75-11-21-R	HOPKINS, CALOGERA L TR	72 BLUE SPRUCE WAY	72 BLUE SPRUCE WAY	MASHPEE	MA	02649
	75-11-22-R	JOHN E HOPKINS REVOCABLE TRUST APFEL, PAUL & BEATRICE	70 BLUE SPRUCE WAY	70 BLUE SPRUCE WAY	MASHPEE	MA	02649
	75-11-23-R	LYON, JANET L	68 BLUE SPRUCE WAY	68 BLUE SPRUCE WAY	MASHPEE	MA	02649
	75-11-24-R	BOLAND, MICHAEL & PATRICIA	· · · · · · · · · · · · · · · · · · ·	66 BLUE SPRUCE WAY	MASHPEE	MA	02649
		CONWAY, JUDITH	64 BLUE SPRUCE WAY		MASHPEE .	MA	02649
	75-11-25-R	SPEROU,L CHALAT T	89 BLUE SPRUCE WAY		SUDBURY	MA	02271
	75-11-26-R		87 BLUE SPRUCE WAY	2330 E MONTROSE CANYON DR	ORO VALLEY	AZ	85755
	75-11-27-R	DICK, JOHN W & NANCY J C/O DICK, JOHN W & NANCY J TRS			MASHPEE	MA	02649
	75-11-28-R	CAMPBELL, ISABEL M TRUSTEE LIFE ESTATE	85 BLUE SPRUCE WAY	· · · · · · · · · · · · · · · · · · ·	MASHPEE	MA	02649
16414	75-11-30-R	PRINCIPE, MICHAEL J JR & PRINCIPE, MARY ELLEN	2 GOLD LEAF LN		MASHPEE	MA	02649
16415	75-11-31-R	BAKER, MARION & KILGROW MARY ANN		4 GOLD LEAF LN			
16416	75-11-32-R	YATES, SHEILA M		6 GOLD LEAF LN	MASHPEE	MA	02649
16417	75-11-33-R	BROWN, J LORRAINE & BROWN, VINCENT G (EST OF)	8 GOLD LEAF LN	8 GOLD LEAF LN	MASHPEE	MA	02649
16418	75-11-34-R	HARDWICK, JEANNE L LIFE ESTATE	10 GOLD LEAF LN	10 GOLD LEAF LN	MASHPEE	MA	02649
16419	75-11-35-R	HAVALOTTI, JUANITA M	12 GOLD LEAF LN	PO BOX 801	MASHPEE	MA	02649
17101	75-11-36-R	YAFFE, ELLEN & EGAN, KATHLEEN M	14 GOLD LEAF LN	14 GOLD LEAF LN	MASHPEE	MA	02649
17106	75-11-37-R	PAIMBLANC, JEAN JACQUES & PIAMBLANC, ARLETTE D	16 GOLD LEAF LN	16 GOLD LEAF LN	MASHPEE	MA	02649
17111	75-11-38-R	ROSS, JOHN C TR C/O DYER, ARNOLD W JR	18 GOLD LEAF LN	9 TORR STREET	ANDOVER	MA	01810-402
17103	75-11-39-R	WILCOX, ELLEN S	20 GOLD LEAF LN	320 VENICE GOLD CLUB DRIVE	VENICE	FL	34444
17.108	75-11-40-R	MCCANN, JAMES W & ANN MARIE TR MCCAN TRUSTS	22 GOLD LEAF LN	22 GOLD LEAF LN	MASHPEE	MA	02649
17113	75-11-41-R	BARNICOAT, LORRAINE TRUSTEE	24 GOLD LEAF LN	24 GOLD LEAF LN	MASHPEE	MA	02649
17.104	75-11-42-R	HOLTEEN, LARUE S	29 GOLD LEAF LN	29 GOLD LEAF LN	MASHPEE	MA	02649
17109	75-11-43-R	BATTS, RICHARD M & BARBARA A	27 GOLD LEAF LN	27 GOLD LEAF LN	MASHPEE	MA	02649
17114	75-11-44-R	STOGEL, SUSAN D	25 GOLD LEAF LN	25 GOLD LEAF LN	MASHPEE	MA	02649
17105	75-11-45-R	HAWKINS, STEPHEN & MARTHA TRS HAWKINS LIVING TRUST	23 GOLD LEAF LN	250 SEA MARSH DRIVE	KIAWAH ISLAND	sc	29455
17110	75-11-46-R	MCLAUGHLIN, WILLIAM & ANN	21 GOLD LEAF LN	21 GOLD LEAF LN	MASHPEE	MA	02649
17115	75-11-47-R	VERROS, ZACHARY & JEANNINE A T	19 GOLD LEAF LN	19 GOLD LEAF LN	MASHPEE	MA	02649-348
	75-11-49-R	VERROS REVOCABLE TRUST MONARCH, MARY K TR	11 GOLD LEAF LN	11 GOLD LEAF LN	MASHPEE	MA	02649

2

.

Кеу	Parcel ID	Owner	Location	Mailing Street	Mailing City		ZipCd/Country
	75-11-91-R	LATTANZI, LINDA M TR LATTANZI REALTY TRUST OF 2009	62 GOLD LEAF LN	160 WINTHROP AVENUE	REVERE	MA	02151
7269	75-11-92-R	BARDIS, JAMES M & ELIZABETH J	64 GOLD LEAF LN	64 GOLD LEAF LN	MASHPEE	MA	02649
7286	75-11-93-R	WILLIAMS, WILLIAM P & KELLY WILLIAMS DONNA	66 GOLD LEAF LN	110 MARY STREET	ARLINGTON	MA	02474
7316	75-11-94-R	VIGNEAU, MARY JEAN	68 GOLD LEAF LN	68 GOLD LEAF LN	MASHPEE	MA	02649
7270	75-11-95-R	BERNIER, RITA J	70 GOLD LEAF LN	70 GOLD LEAF LN	MASHPEE	MA	02649
17287	75-11-96-R	HASKIN, BRUCE & CAROL	72 GOLD LEAF LN	49 CLIFTON AVENUE	MARBLEHEAD	MA	01945
17303	75-11-97-R	RAELIN, JOSEPH A & ABBY P TRS	74 GOLD LEAF LN	294 NEHOIDEN STREET	NEEDHAM	MA	02492
17271	75-11-98-R	ABBY P RAELIN TRUST 2008 FITZPATRICK, EDWIN R & DONNA M	76 GOLD LEAF LN	76 GOLD LEAF LN	MASHPEE	MA	02649
17288	75-11-99-R	HARVEY, JOHN J & LYNN S	78 GOLD LEAF LN	78 GOLD LEAF LN	MASHPEE	MA	02649
17304	75-11-100-R	DEPAUL, ARTHUR W & DIANE	80 GOLD LEAF LN	80 GOLD LEAF LN	MASHPEE	MA	02649
	75-11-101-R	SULLIVAN, MARJORIE G	73 GOLD LEAF LN	73 GOLD LEAF LN	MASHPEE	MA	02649
	75-11-102-R	C/O GINNS, DANIEL P & HEATHER HABERLIN, THOMAS & KATHERINE	71 GOLD LEAF LN	71 GOLD LEAF LN	MASHPEE	MA	02649
	75-11-103-R	STONE, JOHN W JR & EILEEN	69 GOLD LEAF LN	69 GOLD LEAF LN	MASHPEE	MA	02649
				77 GOLD LEAF LN	MASHPEE	MA	02649
· 	75-11-104-R	KRUG, JOHN J & NANCY TRS KRUG 2013 REVOC LIVING TRUSTS		6 N 372 SPLITRAIL LANE	SAINT CHARLES	ΙĹ	60175-6966
	75-11-105-R	MARTIN, WILLIAM C JR & JOANNA		4 LASDEN BROTHERS WAY	FRANKLIN	MA	02038
	75-11-106-R	HOOP, LESLIE C/O HOOP, LESLIE D TR			MASHPEE	MA	02649
17289	75-11-107-R	MURPHY, MICHAEL A & KATHLEEN K	33 RED CEDAR RD				02649
17305	75-11-108-R	WEEKS, C WALLACE		31 RED CEDAR RD	MASHPEE	MA	
17279	75-11-109-R	HAYES, GERALD WILLIAM & HAYES, MAUREEN CARNEY	71 BLUE SPRUCE WAY	71 BLUE SPRUCE WAY	MASHPEE	MA	02649
17290	75-11-110-R	SKINNER, LEWIS H & CYNTHIA P T SKINNER CAPE COD NOMINEE TRUST	39 RED CEDAR RD	39 RED CEDAR RD	MASHPEE	MA	02649
17306	75-11-111-R	BROWN, FRANK A III & DONNA D	37 RED CEDAR RD	37 RED CEDAR RD	MASHPEE	MA	02649
17276	75-11-112-R	TROOP, ANDREW M & SUSSMAN, ANDREA L	65 GOLD LEAF LN	12 DEER POND ROAD	SUDBURY	MA	01776
17292	75-11-113-R	BILIA, LINDA A	67 GOLD LEAF LN	16210 MARSILEA PLACE	NAPLES	FL	34110
17313	75-11-114-R	GOUDREAULT, GEORGE V & GOUDREAULT CATHERINE M	9 GREEN IVY LN	7951 KILKENNY WAY	NAPLES	FL	34112
14336	75-11-122-R	HOOVER, ROBERT J & ANN BRITT C/O HOOVER, ROBERT J& ANN BRIT	69 BLUE SPRUCE WAY	2 CROWNRIDGE ROAD	WESTBOROUGH	MA	01581
14337	75-11-123-R	SCHAIRER, VINCENT E	40 RED CEDAR RD	266 SHINING ROCK DRIVE	NORTHBRIDGE	MA	01534
14338	75-11-124-R	WORTH, JANET M	38 RED CEDAR RD	38 RED CEDAR RD	MASHPEE	MA	02649
14339	75-11-125-R	KERRIGAN, CHRISTINE	36 RED CEDAR RD	36 RED CEDAR RD	MASHPEE	MA	02649
14340	75-11-126-R	ROVNER, SIDNEY & SHARON H LIFE ESTATE	34 RED CEDAR RD	34 RED CEDAR RD	MASHPEE	MA	02649
14341	75-11-127-R	GAGE, JANET N TR C/O GAGE, JANET N TR	32 RED CEDAR RD	32 RED CEDAR RD	MASHPEE	MA	02649
14342	75-11-128-R	RICE, RONALD TR	30 RED CEDAR RD	297 NORTH ST	HYANNIS	MA	02601
14328	75-11-130-R	GRAHAME, ROSE &	2 RED CEDAR RD	2 RED CEDAR RD	MASHPEE	MA	02649
14329	75-11-131-R	TROPEANÓ, CONNIE TOMASETTI, RAYMOND & KATHLEEN	4 RED CEDAR RD	4 DENISE DRIVE	ASHLAND	MA	01721-211
14330	75-11-132-R	MITCHELL, SUSAN F	6 RED CEDAR RD	6 RED CEDAR RD	MASHPEE	MA	02649
	75-11-133-R	SI FSINSKI, ROBERT F TR	8 RED CEDAR RD	8 RED CEDAR RD	MASHPEE	MA	02649
	75-11-134-R	REV ROBERT F SLESINSKI PH D TR KASTNER, WARREN F &	10 RED CEDAR RD	10 RED CEDAR RD	MASHPEE	MA	02649
	75-11-135-R	ELLIOTT, TAHIA TUTTLE, ALICE M & JOHN E	12 RED CEDAR RD		MASHPEE	MA	02649
			14 RED CEDAR RD		MASHPEE	MA	02649
	75-11-136-R		16 RED CEDAR RD		MASHPEE	MA	02649
	75-11-137-R	GLENER, ELINOR	IO NED DEDAIL RU				
	75-11-138-R	CLARK, JEAN F &	AT PLUE ODDUNE MAN	61 BLUE SPRUCE WAY	MASHPEE	MA	02649

W.C. Sp. Permit

BOOY 5734 MAGE 242

or other negative water quality conditions as outlined by the applicable criteria in Massachusetts Surface Mater Quality Standards for Class SA or Class B waters (see 314 CMR 4.00) the applicant will be required to improve, within a reasonable time period, (unless the Windchime Point sewage treatment plant is proven a non=contributor) to the best continution will provide the blonest lavel of sewage treatment) the lavel of sawage treatment at the "Windchime Point" plant. All responsibility to prove any lack of contribution to applicable water quality problems shall be on the applicant. Definition of water quality problems, discussion of best management practices, best available Board public hearing, to be held at its request. Liability incurred by action upon other responsible parties, heretofore not restricted by similar agreements.

Nambur & FAM

To secure the provisions of this special permit agreement, the applicant agrees to post a performance bond, in the form of a fund of \$125,000, payable to the lown of Mashpee, to be used expressly for purposes of improving the level of sewage treatment at the "Mindchime six months of the start of construction of the project, and shall be set aside to accrue interest. The fund shall remain as long term performance quarantee, and is to be used only if the applicant defaults on the itability to improve the level of sewage treatment at the "Windchime Point" plant. Working in this agreement limits the applicant's Itability to \$125,000 plus interest accrued in the fund. It is understood that the total liability of the applicant is limited to the Dest managment practices and/or best available technology improvements (at time of identified water quality problems) shich might include, but are not timited to, denitrification, spray irrigation, or phosphorus removal.

X. Other Provisions

replace ul FAM

The Town of Mashpee, acting through it offices, reserves the right to enter the applicant's property to take independent samples from all monitoring points and stations. It is further understood that the applicant reserves the right to enter upon and contruct well stations on the adjacent property owned by the Trustees of Reservation, for the purposes of fulfilling this agreement. This permission is expressly granted by the provisions of the conservation restriction between Sandcastle-Mashpee Inc. and the Trustees of Reservation. Should the Town of Mashpee form a municipal wastewater treatment commission (or equivalent governmental entity) and request in writing that ownership of the Windchime Point plant be transferred to the Town, all requirements of this monitoring plan placed upon the applicant shall become null and shall remain unaffected.

(5)

Mashpee Planning Board Minutes of Meeting December 5, 2018 at 7:00 p.m. Waquoit Meeting Room, Mashpee Town Hall

Present: Chairman Mary Waygan, Dennis Balzarini, Joe Cummings, David Weeden, Robert (Rob) Hansen (Alt.), David Kooharian

Also: Evan Lehrer-Town Planner, Charles Rowley-Consulting Engineer

CALL TO ORDER

The Town of Mashpee Planning Board meeting was opened with a quorum in the Waquoit Meeting Room at Mashpee Town Hall by the Chair at 7:00 p.m. on Wednesday, December 5, 2018. The Chair stated that the meeting was being videographed and recorded and asked that speakers state their name, address and comment. The Pledge of Allegiance was recited. The Chair acknowledged everyone's attendance at the meeting on this day of mourning for President Bush.

APPROVAL OF MINUTES—September 27, 2018, November 7, 2018 and November 21, 2018

MOTION: Mr. Balzarini made a motion to approve all as presented. Mr. Cummings seconded the motion. All approved unanimously, Mr. Kooharian abstained from the November 21 minutes.

PUBLIC HEARING

7:10 p.m. Road Renaming-Shields Road and Santuit Lane to Shields Avenue Extension (continued from 11/7/18)

The appointed time having arrived, the Chair read for the record the Public Hearing Notice. The Chair reported that an email had been received from 911 Coordinator Clay Nicholson requesting that the item be withdrawn. A recent meeting occurred amongst the interested parties to identify a numbering scheme and a new Public Hearing would be scheduled to rename the road to Santuit Lane.

MOTION: Mr. Balzarini made a motion to accept the withdrawal of this matter from the petitioner. Mr. Kooharian seconded the motion. All voted unanimously.

MOTION: Mr. Balzarini made a motion to close the Public Hearing. Mr. Kooharian seconded the motion. All approved unanimously.

NEW BUSINESS

Discussion and Vote on reopening the Blue Sky Towers II, LLC's Public Hearing on January 2, 2019 at 7:10 pm Regarding Application to Erect a Personal Wireless Service Facility at 101 Red Brook Road, Mashpee Fire Station #2-The Chair noted that the item had been added to the agenda at the last meeting, but was not voted on by roll call vote, so it has again been placed on the agenda.

MOTION: Mr. Balzarini made a motion to reopen the Public Hearing regarding the Blue Sky Towers II, LLC's application for a personal wireless service facility at 101 Red Brook Road, Mashpee Fire Station #2 on January 2, 2019 at 7:10 pm. Mr. Kooharian seconded the motion. All voted unanimously.

1

Vote on Public Hearing Date and Time for Road Naming of Willow Park Townhomes-Mr. Lehrer stated that January 2 would be the earliest date available to provide adequate notice and that the matter was a request from the 911 Coordinator. Mr. Lehrer had not yet received a formal proposal. The Chair suggested review of the request on January 16th at 7:10 p.m.

MOTION: Mr. Balzarini made a motion to schedule a Public Hearing on the Road Naming of Willow Park Townhomes on January 16, 2019 at 7:10 pm. Mr. Kooharian seconded the motion. All voted unanimously.

C. Rowley Billing for November 2018 Services-An invoice was received in the amount of \$845 for November services. The Chair inquired about the budget for consulting services. Mr. Rowley responded that he had been busy for some portions of the year and less busy at other parts of the year. Mr. Rowley anticipated that January would be quieter due to lessened construction. Mr. Lehrer confirmed that Planning Board expenses totaled 60.3% of the total annual budget.

MOTION: Mr. Balzarini made a motion to approve payment of \$845 to Charles Rowley. Mr. Kooharian seconded the motion. All voted unanimously.

Request for Release of Funds Held in Escrow, 33 Trinity Place-The Chair reported that a letter had been received from Conrad Geyser regarding road construction for Trinity Place, confirming that it had been completed per the requirements of the Planning Board. There was consensus to request Mr. Rowley complete an inspection.

MOTION: Mr. Balzarini made a motion to send Mr. Rowley to conduct an inspection. Mr. Kooharian seconded the motion. All voted unanimously.

Discussion of Request to Make a Minor Modification to a Special Permit for a Shared Driveway at 659, 673 and 687 Main Street Originally Issued to Brett Field and Z&J Realty Trust on August 6, 2010 and Recorded in Book 24822 Page 220 at the Barnstable County Registry of Deeds and Vote to Determine if the Request Qualifies as a Minor Modification-The Chair read the request. John Jordan, 673 Main Street owner and resident of 659 Main Street, reported that he removed trees on both sides, resulting in a washout, but was awaiting the building permit to begin construction of the new home ahead of the cold weather, requesting to address drainage concerns at the end of the project.

Mr. Rowley reported that he had inspected the existing road from Route 130 to the driveway located at the current house. Mr. Rowley confirmed that the first portion was 20 feet, but the edges could be better dressed to result in a complete 20 feet. There was a good shoulder on the left side. At the base of the hill, the roadway narrowed and required additional material and widening and could be raised to address puddling and prevent flooding of the common driveway. The current material was in good condition. There was little erosion, but boundaries were not clear between the first and second lots. The lot has been cleared. Mr. Jordan requested an exception to address outstanding issues at the time of acquiring an occupancy permit.

MOTION: Mr. Balzarini made a motion that the matter was a Minor Modification as long as the project proponent consulted with Mr. Rowley. Mr. Kooharian seconded the motion. All approved unanimously.

The project proponent wished to have the Special Permit modified in order to receive a Building Permit. Mr. Lehrer indicated that the Project Proponent wished to pour the foundation ahead of the cold weather and inquired whether the Board would consider a strategy to allow them to obtain a Building Permit without posting a security, making the Occupancy Permit contingent upon the completion of the Special Permit Conditions. Mr. Lehrer confirmed that the Building Inspector had previously questioned the legality of linking a condition to an Occupancy Permit. It was Mr. Lehrer's opinion that the issues in Mr. Rowley's report were minor. Mr. Balzarini inquired about the amount of the bond. Mr. Rowley responded that it was his belief that the project proponent hoped to use the funds to begin construction. Mr. Rowley suggested the possibility of conditioning it with a time limit. Mr. Jordan responded that the home would take a year to complete. The Chair inquired whether, if the work was not completed within 12 months, could a bond be required. There was consensus.

Mr. Rowley stated that Item 3 could not be waived with the Planning Board and would have to be addressed with the Zoning Board of Appeals. Mr. Lehrer confirmed that he would draft the Special Permit Modification and would follow up regarding recording because the Project Proponent wished to begin work. The Chair stated that she wished to review the draft Modification prior to it being forwarded to the Building Inspector. Mr. Rowley confirmed that the document would need to be recorded and would be subject to a 20 day appeal period. There was consensus to take a vote on adding the Condition to the Modification.

MOTION: Mr. Balzarini made a motion to authorize the Chair to sign the Modification. Mr. Kooharian seconded the motion. All approved unanimously.

Mr. Rowley recommended addressing the #3 Condition, requiring that a building be located within 150 feet of a paved road. Mr. Jordan inquired how he could pave another person's property and there was discussion about the common right to use the driveway. Mr. Balzarini suggested that the neighbors may be willing to chip in. The Chair recommended discussing the matter with the Building Commissioner. Mr. Rowley stated that he could speak with the Building Commissioner if there were additional questions.

Proposed Clarification of Process to Submit Comments and Materials to Planning Board for Residents and Local Organizations-The Chair suggested adding a process to the website to provide clarification as to the way in which comments and materials should be forwarded to the Planning Board. The Chair indicated that comments have been provided to staff, intended for the Planning Board, stating that those comments should be in written form to avoid miscommunication and provided directly to the Planning Board. Items being added to the agenda, beyond project proponents, should be a request in writing for Chair review. The Chair inquired about an email address and Mr. Lehrer suggested asking the IT Department to create a Planning Board email address that could be funneled to another email address. Mr. Lehrer will work on having the email address created.

MOTION: Mr. Balzarini made a motion to approve this and post it on the website. Mr. Kooharian seconded the motion. All approved unanimously.

Mr. Lehrer confirmed that the email address should be able to be added quickly to the website.

Proposals from the Town Planner on Zoning Bylaw Amendments: Temporary/Seasonal Signs and Donation Bins-Mr. Lehrer reported that the language for Seasonal Signs was drafted following recent discussion suggesting that it could be improved and drawing from a previously drafted Bylaw at his previous job. Mr. Lehrer worked to simplify the seasonal sign question while empowering the Building Commissioner, a regulatory document using design guidelines provided by the Planning Board. Notes that appeared on the draft were provided by the EDIC, who requested a built-in timeline. It was Mr. Lehrer's opinion that this draft was more functional than the prior version proposed for Town Meeting.

Mr. Hansen inquired about notes on the draft regarding the timeframe for removal of specific event signage and Mr. Lehrer responded that removal was changed to one day after rather than 7 days after the event. The Chair confirmed that the old one was approved by Design Review and this one would be approved by the Planning Board. Mr. Lehrer responded that the guidelines would be developed in the Design Review Committee and then presented to the Planning Board. The design guidelines could offer greater detail. Mr. Lehrer confirmed that sandwich signs would be separate. The signs under discussion would be anything non-permanent. Mr. Lehrer explained that temporary signs could be no larger than 12 square feet. Mr. Lehrer suggested that it would be best to establish design criteria and what was not permitted but the Chair stated her preference for the structure of the older version. Mr. Lehrer did not recommend the older version. Mr. Lehrer explained that a temporary sign would receive a permit and an A-frame sign would be treated separately, but still considered temporary. Mr. Lehrer explained that an A-frame sign communicated differently to the passer by and would not be an impediment and should be allowable as long as they conformed to the design guidelines and be removed when the business was closed. A-frame signs would not be along the roadway because its audience would be pedestrians, not drivers. Concern was expressed that the specificity should appear in the Bylaw but Mr. Lehrer stated it should be in the design guidelines. The design guidelines were in the process of being drafted. Mr. Lehrer stated that there were multiple types of signs that could be regulated by design guidelines and suggested that this proposed Bylaw was more straightforward than what was considered for October Town Meeting. Mr. Lehrer indicated that the Design Review Committee would first define neighborhoods and then craft the design guidelines and establish criteria for approval. The Building Commissioner would then be able to use the guidelines to make determinations. Mr. Lehrer explained that the guidelines would assist in limiting sign pollution around Mashpee.

The Chair inquired whether signage areas would be determined by use and Mr. Lehrer responded that signage style would be determined by location and the need to communicate different messaging to their clientele. Mr. Lehrer noted that temporary signs were not the best way to communicate the location of a business at the end of a street, but instead a structure such as a placard. The Chair inquired whether all businesses would be able to use temporary/seasonal signs and Mr. Lehrer confirmed that anyone demonstrating a need and conforming to the design guidelines could, the goal of which would be to remove visual clutter but still add value to a business. The Chair felt that the draft bylaw could be perceived as allowing too many additional signs and suggested a cap. Mr. Lehrer suggested one per store front, but the Chair felt it would still be too many. The Chair stated that some people disliked sandwich board signs but Mr. Lehrer stated that the A-frame signs were only appropriate in Mashpee Commons, due to its walkability, and not along a roadway. Mr. Lehrer did not recommend regulation that gave some business owners rights and others no rights. Mr. Hansen suggested that a permit fee would guide whether businesses found it profitable to have a temporary sign and Mr. Lehrer agreed, adding that it would also be a means of tracking.

4

Mr. Rowley suggested that "adequate access," under C, was a subjective term requiring more definition, adding that sandwich signs could not diminish accessibility. The Chair recommended the addition of illustrations to the guidelines. The Chair also suggested that sandwich boards could be an opportunity to brand the Town, for example using the Town's motto "live, work, play." Mr. Lehrer responded that it could be considered in the way finding project. Mr. Weeden suggested consideration of securing the signage and Mr. Lehrer confirmed that most temporary sign bylaws required that signage be constructed of durable material.

Regarding donation bins located around Mashpee, Mr. Lehrer stated that they were frequently cluttered and located in inappropriate places and suggested that they be addressed more appropriately. Donation bins could not be prohibited but could be placed in better locations. Mr. Lehrer referenced bins located on Main Street with garbage everywhere, adding that when the contents were picked up, the roadway was blocked by the truck. Bins should not be located on major thoroughfares and should provide a pull off for safety reasons. Due to the garbage and safety issues, Mr. Lehrer suggested regulating the bins so that people could have safe access without traffic being blocked. Mr. Lehrer would like the Board to draft language to be considered at Town Meeting. The Chair inquired whether anyone had been in touch with the property owners and Mr. Lehrer responded that it was the first issue that the Building Commissioner brought to Mr. Lehrer's attention. Mr. Lehrer believed that the Building Commissioner had been in contact with property owners. The Chair asked that Mr. Lehrer find out whether the property owners had been contacted by the Town and whether they had been asked to fix the problems on their own, before consideration of a bylaw that would end up in citation. Mr. Hansen suggested the addition of cameras. Mr. Lehrer noted that there are better locations for the bins.

Signature on October 15, 2018 Town Meeting Approved Road Taking Plans-Board members signed the plans approved at the October 3 meeting.

Cape Cod Commission Public Comment Period on Technical Bulletins-Mr. Weeden reported that comments were posted on the Cape Cod Commission website for the draft Regional Policy Plan, which appears in the Resource Center. The Chair will forward the Board a link and Mr. Weeden noted that December 29 was the deadline for comments to be received. The Chair inquired whether the Board wished to submit comments, as many of the minimum performance standards had been removed from the RPP, replaced with regional goals and objectives carried over to the technical bulletins. The Chair would review what was removed and noted the example of Open Space requirements that had been removed. Mr. Weeden stated that this RPP was a new approach and the Chair added that there were different requirements in different place types. Mr. Balzarini stated that it sounded similar to form-based code. Mr. Lehrer stated that the technical bulletins were specific to DRI review, adding that Eastham or Truro development was different than Hyannis, noting that the standards for development should be different for different places. Removal of thresholds allowed the Commission to review projects specific to the place type. Mr. Balzarini expressed concern about the removal of affordable housing needed all over the Cape. The Chair noted that some towns relied on the Cape Cod Commission for some of the performance standards, such as affordable housing or open space. Mr. Weeden suggested that the intent was likely to allow towns more flexibility. Mr. Balzarini felt that the Cape Cod Commission should serve in an advisory role, assisting towns. The Chair inquired who would determine the place types and Mr. Weeden responded that they were defined but not yet mapped. Mr. Lehrer stated that growth centers, like Mashpee Commons, were established. The Chair inquired whether towns were asked about place types and Mr. Weeden responded that he believed they had been and that Ernie Virgilio served as the Mashpee liaison. Mr. Lehrer stated that certain districts would meet certain criteria. Mr. Weeden suggested the possibility of a Cape Cod

5

Commission presentation and Mr. Lehrer confirmed that Heather Harper would be willing to come to the Planning Board to discuss the technical bulletins.

OLD BUSINESS

Sign Ockway Highlands's Special Permit Modification #1 Following the Lapse of the Appeal Period on November 27, 2018-Mr. Lehrer confirmed that no appeals were received. Planning Board members signed the modification. Mr. Balzarini reported that the area looked good, though there was some runoff. Mr. Rowley reported that the sedimentation basin had blown out two weeks ago and he had asked the developer to protect the basins. The loam washed out with recent rain. Mr. Rowley also asked for additional stone to be added to the shoulders along Blue Castle Drive.

Proposed Revisions to the Light Industry Overlay District-The Chair offered comments and suggested consideration of the draft at the next meeting.

CHAIRMAN'S REPORT

Town Manager Correspondence-The Chair referenced correspondence from the Town Manager in member packets, regarding a meeting with Town Counsel. The Chair stated that she would not facilitate Board members meeting with Town Counsel but encouraged anyone interested to contact Mr. Collins to discuss the matter.

Meeting with Chamber of Commerce-The Chair reported that she, Mr. Hansen and Selectman John Cotton attended a meeting with Mary Lou Palumbo, Patrice Pemental of the Chamber regarding communications and the missions of the Planning Board and the Chamber. Ms. Palumbo had submitted a letter to the Town Clerk. There was consensus that there was a better understanding between the two parties.

Selectmen's Discussion of Mashpee Commons-The Chair reported that meetings for January and February were being planned with the Board of Selectmen, initially to discuss Mashpee Commons, but now extended to include the rotary area. Invitees would include the memberships of the Planning Board, Zoning Board of Appeals, Health Department, Conservation Commission, EDIC and Sewer Commission. Mr. Balzarini inquired why the Tribe was not invited. Mr. Weeden suggested that it appeared to be a town based initiative. Mr. Balzarini felt that the Tribe should be included early in the discussions. The Chair stated that four meetings were being planned to include visionary questions, housing issues, preservation of community character and wastewater. A Comprehensive Wastewater Management Plan presentation would take place on January 14/15. Due to Board member availability, it may be necessary to rotate meeting attendees.

Guest Speakers-The Chair has invited Dr. Brian Howes to deliver the same presentation he gave to the Board of Selectmen and Leslie Richards from the Cape Cod Commission regarding the Economic Development Department, who also indicated that Heather Harper would want to attend. The Chair suggested presentations beginning at 6 p.m.

BOARD MEMBER COMMITTEE UPDATES

Cape Cod Commission-As discussed

Community Preservation Committee-The Chair reported that the deadline for applications had been extended and additional applications received. The Committee will be meeting tomorrow night.

Design Review Committee-Mr. Cummings reported that a sign had been considered for Fit Company for Women. There was discussion about the inability to read the sign with the blue background. A change would also be made to the tagging of the "Cape Cod's Only Women's Club."

9 8 1 8

Mr. Cummings also inquired about placement of the street number. The matter would be further reviewed by the Building Commissioner.

Plan Review-Mr. Lehrer reported that there was discussion regarding Christmas tree sales at Ken Marster's building and he believed it was approved.

Environmental Oversight Committee-No meeting

Greenway Project & Quashnet Footbridge-No meeting

Historic District Commission-No meeting

MMR Military Civilian Community Council-MMR Joint Land Use Study-No meeting

PLANNING STAFF UPDATES

Evergreen Subdivision Conservation Restriction-Mr. Lehrer reported that he had been contacted by the Conservation Agent regarding violations found in the Evergreen Subdivision. In consultation with Town maps, Mr. McManus discovered a growing clearing, approximately 4 acres, in an area that was under a conservation restriction, as required by the Planning Board as part of the approval. A cease and desist order has been issued by the Conservation Department and the ZBA has continued its hearings. Mr. Lehrer consulted with Mr. Rowley regarding whether the Planning Board could withhold the lot release for Evergreen and would be looking into the matter further.

ADDITIONAL TOPICS

None at this time

ADJOURNMENT

MOTION: Mr. Balzarini made a motion to adjourn. Mr. Kooharian seconded the motion. All voted unanimously. The meeting ended at 8:45 p.m.

Respectfully submitted,

Jennifer M. Clifford Board Secretary

LIST OF DOCUMENTS PROVIDED

-12/4/18 Charles Rowley Invoice
-12/5/18 Clay Nicholson Packet Regarding Santuit Lane Matter
-11/8/18 Conrad Geyser Letter Regarding 33 Trinity Place
-11/29/18 Rodney Collins Email & Correspondence Regarding Blue Sky Towers, LLC
-Guidance on How to Submit Written Comments to the Planning Board
-Draft Temporary/Seasonal Signs Bylaw
-12/5/18 Drew McManus Memo Regarding Evergreen Subdivision
-Evergreen Energy, LLC Conservation Restriction
-Images of Evergreen Energy Cluster Subdivision

SCHMIDT, GEORGE C III 17 SANTUIT LN MASHPEE, MA 02649

MASHPEE, TOWN OF CONSERVATION COMMISSION 16 GREAT NECK ROAD NORTH MASHPEE, MA 02649

30-132-0-E

aeoschmidt@rcn.com

Re: Road name and numbering system

From : Michael Campbell <mikeatcamp@yahoo.com>

Subject : Re: Road name and numbering system

> To: George Schmidt <geoschmidt@rcn.com>

I am in favor of George, as representative of BNA, working out the numbering (re)assignments with the town. Thanks.

Mike

On Nov 8, 2018, at 7:26 AM, George Schmidt <geoschmidt@rcn.com> wrote:

Greetings:

I am using an old distribution list so please forward to any name that you might see that is missing.

Planning Board meeting last evening ~ in a nutshell no one has a problem with retaining the name Santuit Lane (Planning Board, Fire Department, CIS coordinator, or the residents that were present.) The CIS coordinator is in charge of emergency response. Numbering is the issue. Seems the FD couldn't find # 1 when there was an emergency with Tina's mom. It brought up the #138 being across the street from #1 which led into etc, etc, etc. The CIS

RCN Webmail

Thu, Nov 08, 2018 07:39 AM

RCN Webmall

RCN Webmail

Re: Road name and numbering system

From : Maura Harway <mharway@gmail.com> Subject : Re: Road name and numbering system To : George Schmidt <geoschmidt@rcn.com> Cc : Richard Mark <rwmarkhome@gmail.com>, fairzee@aol.com, Ann Rothstein <ann.rothstein@umassmed.edu>, Sue Greenberg <s.greenberg@neu.edu>, Rita & Dick Gollin <gollin@aol.com>, Idabrila <ldabrila@veitas.com>, Dennis Shields <denshields@gmail.com>, soulsearcher soulsearcher <soulsearcher_soulsearcher@yahoo.com>, kdavid <kdavid@websterfirst.com>, gregbush007 <gregbush007@comcast.net>, colleenwebb <colleenwebb@yahoo.com>, Jacques R. Fresco <jrfresco@princeton.edu>, rovermp@aol.com, Michael Campbell <mikeatcamp@yahoo.com>, alingertat@aol.com, Kathy Marshak <kmarshak2@gmail.com>, victor romanul <victorromanul@comcast.net></victorromanul@comcast.net></kmarshak2@gmail.com></mikeatcamp@yahoo.com></jrfresco@princeton.edu></colleenwebb@yahoo.com></gregbush007@comcast.net></kdavid@websterfirst.com></soulsearcher_soulsearcher@yahoo.com></denshields@gmail.com></ldabrila@veitas.com></gollin@aol.com></s.greenberg@neu.edu></ann.rothstein@umassmed.edu></rwmarkhome@gmail.com></geoschmidt@rcn.com></mharway@gmail.com>	
<kmarshak2@gmail.com>, victor romandi <victorromanul@comcast.net>, lisaromanul@comcast.net, Teagan <teaganannebokanovich@gmail.com></teaganannebokanovich@gmail.com></victorromanul@comcast.net></kmarshak2@gmail.com>	

Hi George -

That's great! Richard and I are completely in favor of the plan you describe, and glad you will take on the project of getting a better numbering system for the new Santuit Lane which encompasses the whole unpaved part of the road. In this email meeting of the Briant's Neck Association we vote yes on your proposal as described in your email.

Thank you very much for doing this!

RE: Road name and numbering system

Thu, Nov 08, 2018 07:56 AM

From : Linas Dabrila <ldabrila@veitas.com> Subject : RE: Road name and numbering system **To**: Maura Harway < mharway@gmail.com>, George Schmidt <geoschmidt@rcn.com> **Cc**: Richard Mark <rwmarkhome@gmail.com>, fairzee@aol.com, Ann Rothstein <Ann.Rothstein@umassmed.edu>, Sue Greenberg <s.greenberg@neu.edu>, Rita & Dick Gollin <Gollin@aol.com>, Dennis Shields <denshields@gmail.com>, soulsearcher soulsearcher <soulsearcher soulsearcher@yahoo.com>, kdavid <kdavid@websterfirst.com>, gregbush007 <gregbush007@comcast.net>, colleenwebb <colleenwebb@yahoo.com>, Jacques R. Fresco <jrfresco@princeton.edu>, rovermp@aol.com, Michael Campbell <mikeatcamp@yahoo.com>, alingertat@aol.com, Kathy Marshak <kmarshak2@gmail.com>, victor romanul <victorromanul@comcast.net>, lisaromanul@comcast.net, Teagan <teaganannebokanovich@gmail.com>

The Dabrila Family also votes yes to your proposal. Thanks George

Linas J Dabrila PE, SECB Associate Principal

Veitas & Veitas Engineers

RCN Webmail

RE: Santuit Lane

From : Kevin M. David <kdavid@websterfirst.com>

Thu, Nov 08, 2018 07:55 AM @1 attachment

Subject : RE: Santuit Lane

To : George Schmidt <geoschmidt@rcn.com>

Yes it will and I am good with the renaming to Santuit Lane Will probably screw up my engineering plans with ZBA hearings but I will cross that bridge when I have to

Kevin M. David, Esquire

General Counsel Webster First Federal Credit Union 271 Greenwood St, Worcester MA, 01607 Phone: 508-671-5030 | Fax: 774.823.1830 Visit us on <u>Facebook</u>! |Need Insurance, click <u>here</u>!

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the company. Finally, the recipient should check this email and any attachments for the presence of viruses. The company accepts no liability for any

geoschmidt@rcn.com

RCN Webmail

Re: Road name and numbering system

From : Suzanne Greenberg <s.greenberg@northeastern.edu> Subject : Re: Road name and numbering system To:George Schmidt <geoschmidt@rcn.com> **Cc**: Richard Mark <rwmarkhome@gmail.com>, fairzee@aol.com, Ann Rothstein <Ann.Rothstein@umassmed.edu>, Dick Gollin <Gollin@aol.com>, ldabrila <ldabrila@veitas.com>, Dennis <denshields@gmail.com>, soulsearcher soulsearcher <soulsearcher_soulsearcher@yahoo.com>, kdavid <kdavid@websterfirst.com>, gregbush007 <gregbush007@comcast.net>, colleenwebb <colleenwebb@yahoo.com>, MHarway <MHarway@gmail.com>, Jacques R. Fresco <jrfresco@princeton.edu>, rovermp@aol.com, Michael Campbell <mikeatcamp@yahoo.com>, alingertat@aol.com, kmarshak2 <kmarshak2@gmail.com>, victor romanul <victorromanul@comcast.net>, lisaromanul@comcast.net, Teagan <teaganannebokanovich@gmail.com>

Hi George,

Thanks for the update. I am supportive of the proposed actions. Sounds like a great resolution.

Best wishes for the holidays and new year.

Sue

Thu, Nov 08, 2018 07:57 AM

geoschmidt@rcn.com

RCN Webmail

Re: Road name and numbering system

From : Teagan Bokanovich <teaganannebokanovich@gmail.com> Subject : Re: Road name and numbering system To: Suzanne Greenberg <s.greenberg@northeastern.edu> Cc:George Schmidt <geoschmidt@rcn.com>, Richard Mark <rwmarkhome@gmail.com>, fairzee@aol.com, Ann Rothstein <Ann.Rothstein@umassmed.edu>, Dick Gollin <Gollin@aol.com>, ldabrila <ldabrila@veitas.com>, Dennis <denshields@gmail.com>, soulsearcher soulsearcher <soulsearcher_soulsearcher@yahoo.com>, kdavid <kdavid@websterfirst.com>, areabush007 <gregbush007@comcast.net>, colleenwebb <colleenwebb@yahoo.com>, MHarway <MHarway@gmail.com>, Jacques R. Fresco <irfresco@princeton.edu>, rovermp@aol.com, Michael Campbell <mikeatcamp@yahoo.com>, alingertat@aol.com, kmarshak2 <kmarshak2@gmail.com>, victor romanul <victorromanul@comcast.net>, lisaromanul@comcast.net

Hello!

I'm sorry I couldn't make it to the discussion last night! Thank you for taking control of this!

I really love Santuit so I'm happy to keep it. While I would love to still be 34 I am flexible and can go with whatever works!!!

Thank you, Teagan :)

Thu, Nov 08, 2018 08:19 AM

http://mail.rcn.com/zimbra/h/printmessage?id=436133

geoschmidt@rcn.com

@1 attachment

RCN Webmail

Re: Road name and numbering system

From : Ann Rothstein Thu, Nov 08, 2018 08:31 AM <Ann.Rothstein@umassmed.edu> Subject : Re: Road name and numbering system To:George Schmidt < geoschmidt@rcn.com> **Cc**: Richard Mark <rwmarkhome@gmail.com>, fairzee@aol.com, S Greenberg <s.greenberg@neu.edu>, Dick Gollin <Gollin@aol.com>, ldabrila <ldabrila@veitas.com>, Dennis <denshields@gmail.com>, soulsearcher soulsearcher <soulsearcher_soulsearcher@yahoo.com>, kdavid <kdavid@websterfirst.com>, greabush007 <gregbush007@comcast.net>, colleenwebb <colleenwebb@yahoo.com>, MHarway <MHarway@gmail.com>, Jacques R. Fresco <jrfresco@princeton.edu>, rovermp@aol.com, Michael Campbell <mikeatcamp@yahoo.com>, alingertat@aol.com, kmarshak2 <kmarshak2@gmail.com>, victor romanul <victorromanul@comcast.net>, lisaromanul@comcast.net, Teagan <teaganannebokanovich@gmail.com>

Your proposal is also fine with me - thanks so much for serving as our representative!

From: Schmidt George <<u>geoschmidt@rcn.com</u>> Date: Thursday, November 8, 2018 at 7:26 AM To: Schmidt George <<u>geoschmidt@rcn.com</u>> Cc: Richard Mark <rwmarkhome@gmail.com>, "fairzee@aol.com" <fairzee@aol.com>, Ann Rothstein <ann.rothstein@umassmed.edu>, S Greenberg RCN Webmail

RCN Webmail

Re:	Road	name	and	numbering	system
-----	------	------	-----	-----------	--------

From : Victor Romanul Thu, Nov 08, 2018 09:00 AM <victorromanul@comcast.net> Subject : Re: Road name and numbering system To: George Schmidt < geoschmidt@rcn.com> **Cc**: Richard Mark <rwmarkhome@gmail.com>, fairzee@aol.com, Ann Rothstein <Ann.Rothstein@umassmed.edu>, S Greenberg <s.greenberg@neu.edu>, Dick Gollin <Gollin@aol.com>, ldabrila <ldabrila@veitas.com>, Dennis <denshields@gmail.com>, soulsearcher soulsearcher <soulsearcher_soulsearcher@yahoo.com>, kdavid <kdavid@websterfirst.com>, gregbush007 <gregbush007@comcast.net>, colleenwebb <colleenwebb@yahoo.com>, MHarway <MHarway@gmail.com>, Jacques R. Fresco <irfresco@princeton.edu>, rovermp@aol.com, Michael Campbell <mikeatcamp@yahoo.com>, alingertat@aol.com, kmarshak2 <kmarshak2@gmail.com>, lisaromanul@comcast.net, Teagan <teaganannebokanovich@gmail.com>

Thank you George. Sounds like a great plan. Very much in support! Victor

Sent from my iPhone

On Nov 8, 2018, at 7:26 AM, George Schmidt <<u>geoschmidt@rcn.com</u>> wrote:

Greetings:

RCN Webmail

Re: Road name and numbering system

From : Susan Lindsay Thu, Nov 08, 2018 09:40 AM <soulsearcher_soulsearcher@yahoo.com> Subject : Re: Road name and numbering system To: Victor Romanul <victorromanul@comcast.net> **Cc**: George Schmidt < geoschmidt@rcn.com>, **Richard Mark** <rwmarkhome@gmail.com>, fairzee@aol.com, Ann Rothstein <Ann.Rothstein@umassmed.edu>, S Greenberg <s.greenberg@neu.edu>, Dick Gollin <Gollin@aol.com>, Idabrila <ldabrila@veitas.com>, Dennis <denshields@gmail.com>, kdavid <kdavid@websterfirst.com>, areabush007 <gregbush007@comcast.net>, colleenwebb <colleenwebb@yahoo.com>, MHarway <MHarway@gmail.com>, Jacques R. Fresco <jrfresco@princeton.edu>, rovermp@aol.com, Michael Campbell <mikeatcamp@yahoo.com>, alingertat@aol.com, kmarshak2 <kmarshak2@gmail.com>, lisaromanul@comcast.net, Teagan <teaganannebokanovich@gmail.com>

Hey George,

The meeting last night was very productive and I believe our arguments for retaining the name Santuit Lane were compelling.

Even the FD didn't particularly care for the name Shields Extension.

Also, valid points regarding safety were made that require revamping the numbering system which makes perfect sense.

I'm definitely on board!

Thank you George, Mike and Donna for your input last night as well.

geoschmidt@rcn.com

Thu, Nov 08, 2018 01:14 PM

Re: Road name and numbering system

From : gollin@aol.com

Subject : Re: Road name and numbering system

- To :soulsearcher soulsearcher <soulsearcher_soulsearcher@yahoo.com>, victorromanul@comcast.net, jgollin@angelicafoundation.org
- Cc:geoschmidt@rcn.com, rwmarkhome@gmail.com, fairzee@aol.com, Ann Rothstein <Ann.Rothstein@umassmed.edu>, s greenberg <s.greenberg@neu.edu>, Idabrila@veitas.com, denshields@gmail.com, kdavid@websterfirst.com, gregbush007@comcast.net, colleenwebb@yahoo.com, MHarway@gmail.com, irfresco@princeton.edu, rovermp@aol.com, mikeatcamp@yahoo.com, alingertat@aol.com, kmarshak2@gmail.com, lisaromanul@comcast.net, teaganannebokanovich@gmail.com

Making the whole of "the dirt road" (as we call it, whatever the different sections' official titles) into "Santuit Lane" will be a vast improvement. Numbering the houses in rising sequence as anyone proceeds down the dirt road (sorry, I mean, "Santuit Lane") might be even more so. If odd numbers to the left and even numbers to the right as one proceeds, more so still, because that's customary in most built-up areas. But I expect the FD, the PD, and other emergency services know what's most sensible, so whatever they propose! We'll be happy to consign our present "27" sign to Memory Lane and get a new one for a sensibly renumbered Santuit Lane house.

It may be that any independently maintained buildable lots should have their

11/8/2018

geoschmidt@rcn.com

1/4

RE: Road name and numbering system

From : Jacques R. Fresco <jrfresco@Princeton.EDU> Subject : RE: Road name and numbering system To:gollin@aol.com, soulsearcher soulsearcher <soulsearcher_soulsearcher@yahoo.com>, victorromanul@comcast.net, jgollin@angelicafoundation.org Cc:geoschmidt@rcn.com, rwmarkhome@gmail.com, fairzee@aol.com, Ann Rothstein <Ann.Rothstein@umassmed.edu>, s greenberg <s.greenberg@neu.edu>, Idabrila@veitas.com, denshields@gmail.com, kdavid@websterfirst.com, gregbush007@comcast.net, colleenwebb@yahoo.com, MHarway@gmail.com, rovermp@aol.com, mikeatcamp@yahoo.com, alingertat@aol.com, kmarshak2@gmail.com, lisaromanul@comcast.net, teaganannebokanovich@gmail.com

We very much like the idea of retaining the name Santuit Lane. The name Shields Extention sounds foreign and irrelevant.

Jacques and Rosalie Fresco

From: gollin@aol.com [mailto:gollin@aol.com] Sent: Thursday, November 08, 2018 1:14 PM **To:** soulsearcher soulsearcher@yahoo.com; victorromanul@comcast.net; jgollin@angelicafoundation.org **Cc:** geoschmidt@rcn.com; rwmarkhome@gmail.com; fairzee@aol.com; Ann.Rothstein@umassmed.edu; s.greenberg@neu.edu; ldabrila@veitas.com; denshields@gmail.com; kdavid@websterfirst.com; gregbush007@comcast.net;

RCN Webmail

11/8/2018

Thu, Nov 08, 2018 05:47 PM

Call for Mashpee Zoning Bylaw Correction

Mary Mary

Wed 12/19/2018, 6:23 PM

To: Rodney C. Collins <rccollins@mashpeema.gov> Cc: Evan Lehrer <ELehrer@mashpeema.gov>; Wayne E. Taylor <wtaylor@mashpeema.gov>; David Kooharian <davidkoo@comcast.net>; David Weeden <David.Weeden@mwtribe-nsn.gov>; Joseph P. Cummings (cummingsj3@msn.com) <cummingsj3@msn.com>; Dennis Balzarini <dhbalz@yahoo.com>;

robhansen00@msn.com <robhansen00@msn.com>; Charles Rowley <crsr63@verizon.net>; Jen EOC <capecodjcliff@aol.com>; Debbie Dami <ddami@mashpeema.gov>; Mary Waygan <waygan@hotmail.com> Bcc Mo Fahd <mohamadf@hotmail.com>

5 attachments (4 MB)

1998 Mashpee Annual Report.pdf; AG Letters.pdf; Email TF September 24 2018.pdf; PB Minutes September 16 1998.pdf; Wireless Facility Overlay District.pdf;

Dear Rodney,

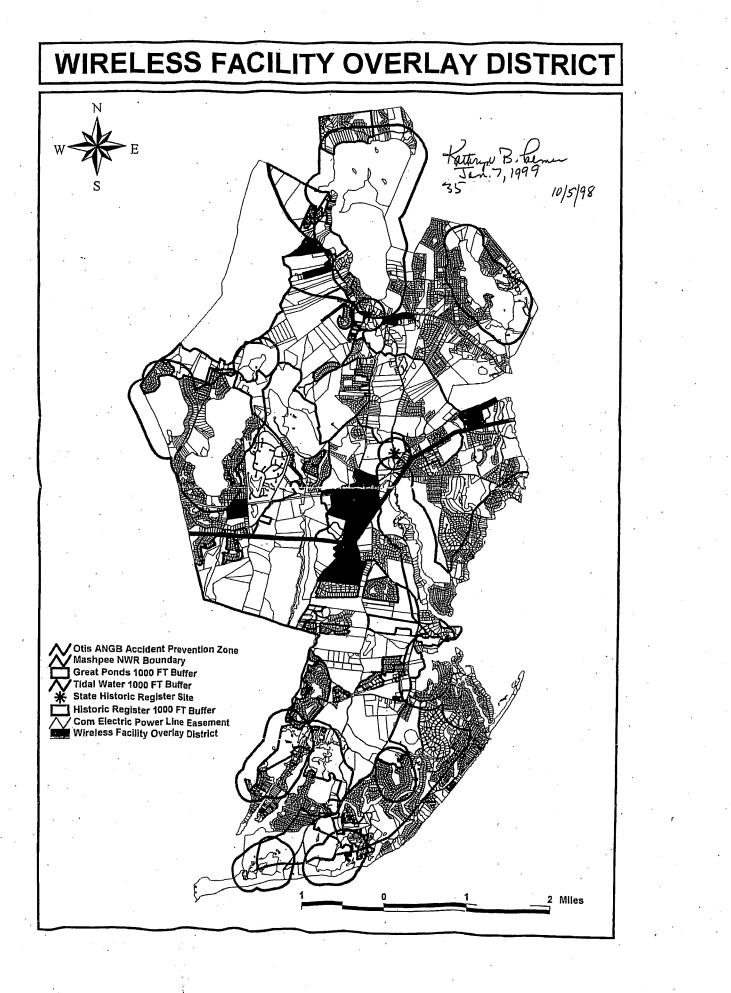
Thank you for your time on the phone today.

I formally call for the currently published Town of Mashpee Zoning Bylaw to be corrected in order to properly reflect the vote by October 5, 1998 Town Meeting which approved Article 35 as amended on the floor. Article 35 as amended excludes the R-3 and R-5 Zoning Districts from the Wireless Facility Overlay District. The following portion of the amendment is not correctly incorporated into the Zoning Bylaw:

add the phrase ", within the R-3 or R-5 Zoning Districts" after the phase "Otis A.N.G.B. Accident Prevention Zone" in Subsection 174-5.C.

Attached please find the following:

- 1. The Wireless Facility Overlay District map approved by the Attorney General on Jan 7, 1999;
- Letters from the Massachusetts Attorney General's Office approving zoning article 35 as amended;
- 3. Town of Mashpee Annual Report for the year 1998 documenting the October 5, 1998 Town Meeting vote on Article 35 as amended;
- 4. Planning Board Minutes of Meeting for September 16, 1998 (the discussion on Article 35 and amendment starts on page 4 and ends on page 7);
- 5. Email from Mr. Thomas Fudala dated September 24, 2018 re: Wireless Overlay District Article etc. (as way of background).


I respectfully request the corrected Zoning Bylaw is forwarded to all Planning Board members and all current petitioners and applicants to the Planning Board as soon as possible, but in no case later than Thursday December 27, 2018.

I apologize for the timing of this request. I had hope to submit this to you sooner, but there have been some unexpected matters which have dominated my time.

Yours,

Mary Waygan, Chair

https://outlook_live.com/mail/contiteme/id/AON/kADAwATV37mVA7QA5N/DV/iLW/M1VTEtN/DACLTAwCaBCAAAADW/kBkCaEAowcAcaAAAAAQW/D 1/2

The Commonwealth of Massachusetts Office of the Attorney General One Ashburton Place Boston, MA 02108-1698

SCOTT HARSHBARGER

REPLY TO: DEPT. OF THE ATTORNEY GENERAL WESTERN MASS. DIVISION 436 DWIGHT STREET SPRINGFIELD, MASSACHUSET TS 01103-1317 (413) 784-1240

November 23, 1998

Deborah F. Dami, Town Clerk Town of Mashpee 16 Great Neck Road North Mashpee, MA 02649

Re: Fall Annual Town Meeting Case #347E

> Date of Town Meeting October 5, 1998 Date By-law amendments received by AG October 13, 1998 90th Day January 11, 1999

Dear Ms. Dami:

Thank you for submitting the by-laws adopted at Mashpee's recent Fall Annual Town Meeting. We received your packet on 10/13/98. Assuming the packet is complete and additional information is not requested in the interim by this Office, you may expect our review to be completed within ninety (90) days from the date of receipt.

If the 90th day falls on a weekend or holiday, final action shall be extended to the next business day. The review period may also be extended if the Attorney General, in writing, requests additional information or documents which are deemed essential to a complete review of the by-law amendments. In this case the 90 day review period will be deemed to commence upon the date on which the additional information or documentation is received.

Please feel free to contact us if you have any questions during this process.

Very truly yours,

Sandra R. Giordang Paralegal, Municipal Law Unit Springfield: (413) 784-1240 x 17

F:\USERS\RITCHIE\WP61\DOCS\TOWNS\MASHPEE\981005PR.FA1

The Commonwealth of Massachusetts Office of the Attorney General One Ashburton Place Boston, MA 02108-1698

SCOTT HARSHBARGER ATTORNEY GENERAL (617) 727-2200

January 4, 1999

Deborah F. Dami, Town Clerk 16 Great Neck Road North Mashpee MA 02649

Re:

General Articles 17, 18 and 25 and Zoning Articles 26, 27, 29, 31, 32, 33, 34, 35 and 37. Mashpee Fall Annual Town Meeting 10/5/98, # 347

Dear Ms. Dami:

I return the amendments to the general by-laws adopted under articles 17, 18 and 25, as well as the amendments to the zoning by-laws adopted under articles 26, 27, 29, 31, 32, 34 and 37, all of the warrant for the "fall annual" town meeting, which first convened on October 5, 1998, with our approval.

In so approving the aforementioned articles, I would like to also warn the Town that the town meeting which took place on October 5 and 6, according to our records, was not an "annual" meeting under G.L. c. 39, § 9, but, rather, was actually a special town meeting. This is because the "fall annual" town meeting was created by by-law amendment instead of by special legislation or change to the town charter. While it appears that no harm was done this time in calling the town meeting an "annual" (with regard to the length of the notice, etc.), this should be cause for concern for future "fall annual" town meetings. In addition, in approving general article 18, I would like to remind the Town that, while, under G.L. c. 40, § 21D, certain of the "enforcing person's" administerial duties may be delegated to the Town Clerk, all notices issued pursuant to this statute must be "signed by the enforcing person" and not the Town Clerk.

Zoning articles 33 and 35 were also submitted with the same warrant. However, I have

TOWH OF MASHPEE TOWH CLERK 9 JAN -7 PK 12: 30 been in contact with the Town Clerk, and I am awaiting receipt of maps with regard to those two articles before commencing our review of them.

Sincerely,

Falme Hattemp ィ

Kathryn B. Palmer Assistant Attorney General Coordinator, Municipal Law Unit One Ashburton Place, Room 2019 Boston, MA 02108

Encl.

cc: Kopelman and Paige, P.C., 31 St. James Ave., Boston, MA 02116

The Commonwealth of Massachusetts Officer of the mey General Town Clerk Place 15, 19, 1999 2108-1698 plousard; SCOTT HARSHBARGER 10 ATTORNEY GENERAL

(617) 727-2200

January 7, 1999

Deborah F. Dami, Town Clerk 16 Great Neck Road North Mashpee MA 02649

Re:

Mashpee Fall Annual Town Meeting 10/5/98, # 347

Zoning Articles 33 and 35

Dear Ms. Dami:

I return the amendments to the zoning by-laws adopted under articles 33 and 35 of the warrant for the "fall annual" town meeting, which first convened on October 5, 1998, and the maps that pertain to each of those articles, with the approval of this Office.

Sincerely, Lathryn B. Talmer

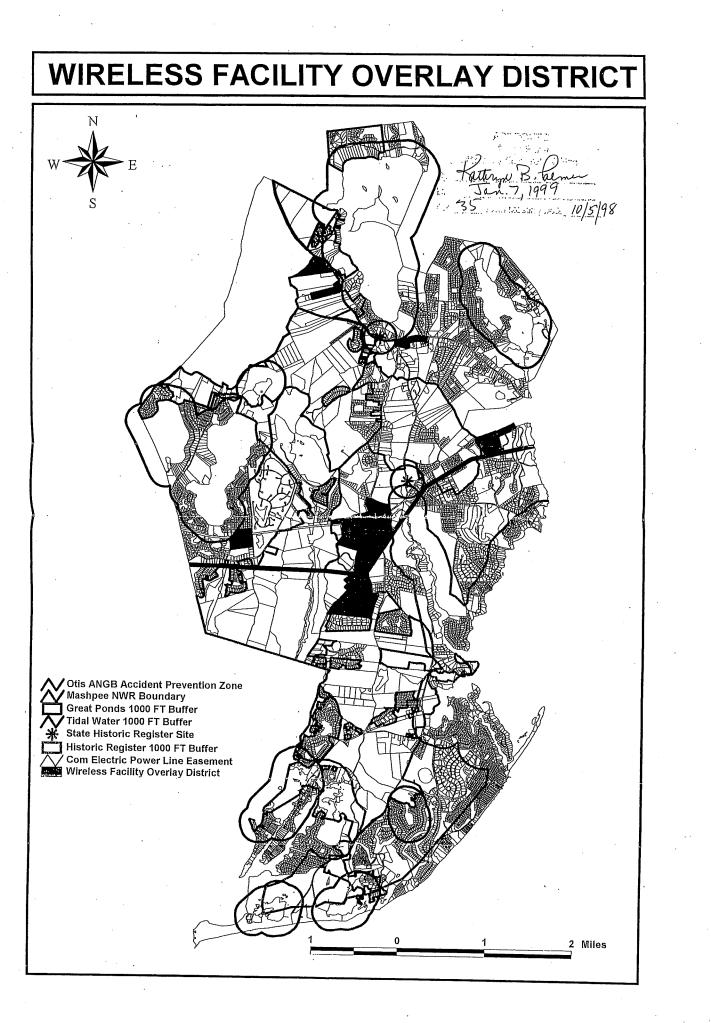
Kathryn B. Palmer Assistant Attorney General Coordinator, Municipal Law Unit One Ashburton Place, Room 2019 Boston, MA 02108

Encl

cc: Kopelman and Paige, P.C., 31 St. James Ave., Boston, MA 02116

Boston, Massachusetts

The foregoing amendments to the zoning by-laws adopted under articles 33 and 35 of the warrant for the fall annual town meeting of October 5, 1998, and the maps that pertain to each of those articles are approved.


99 JAN 12 PH 12: 55

FOFE

SCOTT HARSHBARGER ATTORNEY GENERAL

By: Kathryn B. Palmer Assistant Attorney General

Dated: January 7, 1999

One Hundred and Twenty-Sixth

ANNUAL REPORT

of the

TOWN OFFICERS

of the Town of

MASHPEE

MASSACHUSETTS

for the year **1998**

Index

Animal Control Officer
Appeals, Board of
Assessors
Assessors, Water District
Building Department
Cape Cod Regional Technical High School District
Citizen Interest Form
Conservation Commission
Council on Aging 164
Data Processing Department
Economic Development Committee
Finance Committee 11
Fire Chief
Harbormaster
Health, Board of 131
Historical Commission
Mashpee Public Library 129
Personnel Board 161
Planning Board 127
Planning Department
Plumbing/Gas Inspector
Police Chief
Public Works
Registrars, Board of110
School Department
Sealer of Weights & Measures126

· · · · ·
Sewer Commission 169
Selectmen §
Shellfish Department12
South Cape Beach State Park Advisory Committee
Town Accountant 12
Balance Sheet 12
Debt Schedule 14
Revenue Ledger 1
Expense Ledger 17
Town Clerk 39
Births 4(
Deaths 4(
Marriages 4
Special Town Meeting (May 4, 1998) 43
Annual Town Meeting (May 4, 1998) 4
Omnibus Article 56
Annual Town Meeting (October 5, 1998) 78
Election Results:
Cape Wide Land Bank Election (January 27,1998)11
Annual Town Election (May 9, 1998)11
State Primary (September 15, 1998)112
State Election (November 3, 1998)115
Special Proposition 2 1/2 Override (November 14, 1998)116
Town Employees and Earnings
Town Officers
Treasurer/Tax Collector 34
Waterways Commission167
Wire Inspector

Printing - Binding by

ŀ

J & R Graphics, Inc. 155-L Webster St, Hanover – 781-871-7577

Motion made by Nancy Caffyn.

Motion: I move Article 34 be approved as printed in the warrant with the exception of the phrase, "or take any other action related thereto."

Planning Board voted at the Public Hearing held on August 19, 1998 4 to 0 for approval.

Motion passes unanimously at 9:12pm.

Article 35

To see if the Town will vote to amend the zoning bylaw by adding the following new sections and subsections:

Add the following to the listing of zoning districts contained in Section 174-4:

"Wireless Facility Overlay District".

Add the following new Subsection C. to Section 174-5 Establishment of Zoning Map:

"C. The Wireless Facility Overlay District shall include 1) the area within the 210 foot wide Commonwealth Electric Company transmission line easement running generally east-west between the Falmouth town line and the Barnstable town line, 2) all other lands in the Town which are not located within the boundaries of the Mashpee National Wildlife Refuge, within 1000 feet of the mean high water line of a Great Pond or a tidal water body, within Historic Districts, within 1000 feet of a Historic District or of structures or places listed in the 1997 Massachusetts State Register of Historic Places, within the Otis A.N.G.B. Accident Prevention Zone or within 300 feet of the right of way of any designated scenic roadway."

Add the following new Subsection H.(8) to Section 174-25. Table of Use Regulations:

"(8) Personal wireless service facilities, subject to the provisions of Section 174-45.2."

and indicate by inserting the letters "SP" in all columns of the Table of Use Regulations that such use is allowed by special permit in all zoning districts.

Add the following new Section 174-45.2:

"174-45.2. Personal Wireless Service Facilities.

A. Purpose and intent.

For the purpose of minimizing the visual and environmental impacts, as well as any potential deleterious impact on property values, of personal wireless service facilities, no personal wireless service facility shall be placed, constructed or modified within the town except in conformance with the requirements of this section, in conjunction with other regulations adopted by the Town. including historic district regulations, design review and other bylaws and regulations designed to encourage appropriate land use, environmental protection, and provision of adequate infrastructure development.

The regulation of personal wireless service facilities is consistent with the purposes of the Mashpee zoning bylaw and the planning efforts of the town through its comprehensive plan, including those intended to further the conservation and preservation of developed, natural and undeveloped areas, wildlife, flora and habitats for endangered species, the preservation of coastal resources, protection of natural resources, balanced economic growth, the provision of adequate capital facilities, the coordination of the provision of adequate capital facilities with the achievement of other goals and the preservation of historical, cultural, archaeological, architectural and recreational values.

In accordance with the requirements of 47 U.S.C. s332(c)(7)(B), and until these requirements are modified, amended or repealed, in regulating the placement, construction and modification of personal wireless service facilities, the administration of this bylaw shall not be undertaken in a manner which unreasonably discriminates among providers of functionally equivalent services or prohibits, or has the effect of prohibiting, the provision of personal wireless services. Any decision to deny a request to place, construct or modify personal wireless service facilities shall be in writing and supported by substantial evidence contained in a written record. Furthermore, this bylaw may not regulate the placement, construction and modification of personal wireless service facilities on the basis of the environmental effects of radio frequency emissions to the extent that such facilities comply with the Federal Communications Commission's regulations concerning such emissions.

B. Definitions.

In addition to the definitions contained in Section 174-3, the following shall apply to Personal Wireless Service Facilities:

ABOVE GROUND LEVEL (AGL) - A measurement of height from the natural grade of a site to the highest point of a structure.

ANTENNA - The surface from which wireless radio signals are sent and received by a personal wireless service facility.

CAMOUFLAGED - A personal wireless service facility that is disguised, hidden, part of an exist-

ing or proposed structure or placed within an existing or proposed structure is considered "camouflaged."

CARRIER - A company that provides wireless services.

CO-LOCATION - The use of a single mount on the ground by more than one carrier (vertical colocation) and/or several mounts on an existing building or structure by more than one carrier.

語語を見ていたいには、語言を見たいというとうでいたかから、語言は

1 126 2.14

States States

CROSS-POLARIZED (OR DUAL-POLAR-IZED) ANTENNA - A low mount that has three panels flush mounted or attached very close to the shaft.

ELEVATION - The measurement of height above mean sea level.

ENVIRONMENTAL ASSESSMENT (EA) - An EA is the document required by the Federal Communications Commission (FCC) and the National Environmental Policy Act (NEPA) when a personal wireless service facility is placed in certain designated areas.

EQUIPMENT SHELTER - An enclosed structure, cabinet, shed or box at the base of the mount within which are housed batteries and electrical equipment.

FALL ZONE - The area on the ground within a prescribed radius from the base of a personal wireless service facility. The fall zone is the area within which there is a potential hazard from falling debris (such as ice) or collapsing material.

FUNCTIONALLY EQUIVALENT SERVICES -Cellular, Personal Communication Services (PCS), Enhanced Specialized Mobile Radio, Specialized Mobile Radio and Paging.

GUYED TOWER - A monopole or lattice tower that is tied to the ground or other surface by diagonal cables.

LATTICE TOWER - A type of mount that is self-supporting with multiple legs and cross-bracing of structural steel.

LICENSED CARRIER - A company authorized by the FCC to construct and operate a commercial mobile radio services system.

MONOPOLE - The type of mount that is selfsupporting with a single shaft of wood, steel or concrete and a platform (or racks) for panel antennas arrayed at the top and/or along its length.

MOUNT - The structure or surface upon which antennas are mounted, including the following

four types of mounts:

- (1) Roof-mounted. Mounted on the roof of a building.
- (2) Side-mounted. Mounted on the side of a building.
- (3) Ground-mounted. Mounted on the ground.
- (4) Structure-mounted. Mounted on a structure other than a building.

OMNIDIRECTIONAL (WHIP) ANTENNA - A thin rod that beams and receives a signal in all directions.

PANEL ANTENNA - A flat surface antenna, usually developed in multiples.

PERSONAL WIRELESS SERVICE FACILITY - Facility for the provision of personal wireless services, as defined by the Telecommunications Act, including towers, poles, antennae and appurtenant structures.

PERSONAL WIRELESS SERVICES - The three types of services regulated by this bylaw: commercial mobile radio services, unlicensed wireless services and common carrier wireless exchange access services.

RADIOFREQUENCY (RF) ENGINEER - An engineer specializing in electrical or microwave engineering, especially the study of radiofrequencies.

RADIOFREQUENCY RADIATION (RFR) -The emissions' from personal wireless service facilities. (Regulated by the FCC "Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation").

SECURITY BARRIER - A locked, impenetrable wall, fence or berm that completely seals an area from unauthorized entry or trespass.

SEPARATION -The distance between one carrier's array of antennas and another carrier's array.

C. Permit process.

A personal wireless service facility shall require a building permit in all cases and may be permitted as follows:

 A personal wireless service facility may be located on any existing guyed tower, lattice tower, monopole, electric utility transmission tower, fire tower or water tower, provided that the installation of the new facility does not increase the height of the existing structure except as provided in Subsection E.(5) below. Such installations shall not require a special permit but shall require plan review (PR) approval by the town under the provisions of Subsection 174-24B.

- (2) Otherwise, no personal wireless service facility involving construction of one or more ground or building (roof or side) mounts shall be located in the town except upon issuance of a special permit by the Planning Board under the provisions of Subsection 174-24(C) and of this section.
- (3) A personal wireless service facility that exceeds the height restrictions of Subsections E.(1) through (5) may be permitted by special permit, as specified in Subsection C.(2), in a designated Wireless Service Overlay District provided that the proposed facility complies with the height restrictions of Section E.(6), and all of the setback and other regulations set forth in this section.
- (4) Any applicant must demonstrate that the proposed facility is necessary in order to provide adequate service to the public.
- D. Location.

Applicants seeking approval for personal wireless service facilities shall comply with the following:

- (1) If feasible, personal wireless service facilities shall be located on existing structures, including but not limited to buildings, water towers, existing telecommunications facilities, utility poles and towers, and related facilities, provided that such installation preserves the character and integrity of those structures. In particular, applicants are urged to consider use of existing telephone and electric utility structures as sites for one or more personal wireless service facilities. The applicant shall have the burden of proving that there are no feasible existing structures upon which to locate.
- (2) If the applicant demonstrates that it is not feasible to locate on an existing structure, personal wireless service facilities shall be designed so as to be camouflaged to the greatest extent possible, including but not limited to: use of compatible building materials and colors, screening, landscaping and placement within trees.
- (3) The applicant shall submit documentation of the legal right to install and use the proposed facility mount at the time of application for plan review or special permit.

E. Dimensional requirements.

Personal wireless service facilities shall comply with the following requirements:

- (1) Height, General: Regardless of the type of mount, personal wireless service facilities shall be no higher than ten feet above the average height of buildings within 300 feet of the proposed facility. In addition, the height of a personal wireless service facility shall not exceed by more than ten feet the height limits of the zoning district in which the facility is proposed to be located, unless the facility is completely camouflaged such as within a flagpole, steeple, chimney, or similar structure. Personal wireless service facilities may be located on a building that is legally non-conforming with respect to height, or has received a height variance. provided that the facilities do not project above the existing building height.
- (2)Height, Ground-Mounted Facilities: Ground-mounted personal wireless service facilities shall not project higher than ten feet above the average building height or, if there are no buildings within 300 feet, these facilities shall not project higher than ten feet above the average tree canopy height, measured from ground level (AGL). If there are no buildings within 300 feet of the proposed site of the facility, all groundmounted personal wireless service facilities shall be surrounded by dense tree growth to screen views of the facility in all directions. These trees may be existing on the subject property or planted on site.
- (3) Height, Side- and Roof-Mounted Facilities: Side- and roof-mounted personal wireless service facilities shall not project more than ten feet above the height of an existing building nor project more than ten feet above the height limit of the zoning district within which the facility is located. Personal wireless service facilities may be located on an existing building that is legally nonconforming with respect to height, or has received a height variance, provided that the facilities do not project above the existing building height.
- (4) Height, Existing Structures: New antennas located on any of the following structures existing on the effective date of this bylaw shall be exempt from the height restrictions of this bylaw provided that there is no increase in height of the existing structure as a result of the installation of a personal

wireless service facility: water towers, guyed towers, lattice towers, fire towers and monopoles.

Height, Existing Structures, (Utility): New (5)antennas located on any of the following existing structures shall be exempt from the height restrictions of this bylaw, provided that there is no more than a twenty (20) foot increase in the height of the existing structure as a result of the installation of a personal wireless service facility: electric transmission and distribution towers, telephone poles and similar existing utility structures. This exemption shall not apply in Historic Districts, within 300 feet of structures or places listed in the Massachusetts State Register of Historic Places, within 150 feet of the right-of-way of any designated scenic roadway, or within 300 feet of any Great Pond or tidal water body.

(6) Height, Wireless Facility Overlay District: Within the Wireless Facility Overlay District (as described in Subsection 174-5.C.), personal wireless service facilities of up to 100 feet in height may be permitted by Special Permit, except that the Planning Board may grant a waiver to allow a height of up to 200 feet where circumstances warrant (e.g. no serious impact on neighboring properties, residential areas, historic districts, historic places or scenic vistas, along with the opportunity to eliminate a larger number of towers of lower height which might result in such impacts). Monopoles are the preferred type of mount for such taller structures. Such structures shall comply with all setback and Special Permit Regulations set forth in this Bylaw.

(7) Setbacks: All personal wireless service facilities and their equipment shelters shall comply with the building setback provisions of the zoning district in which the facilities are located. In addition, the following setbacks shall be observed:

> (a) In order to ensure public safety and prevent hazards to people and neighboring property from potential facility collapse or falling ice or other debris, the minimum distance from the base of any ground-mounted personal wireless service facility to any property line, road, habitable dwelling, business or institutional use, or public recreational area shall be the height of the facility/mount, including any

antennas or other appurtenances. This setback is considered a "fall zone".

- (b) In the event that an existing structure is proposed as a mount for a personal wireless service facility, a fall zone shall not be required, but the setback provisions of the zoning district shall apply. In the case of pre-existing nonconforming structures, personal wireless service facilities and their equipment shelters shall not increase any non-conformities, except as provided in Subsection (8) below.
- (8) Flexibility: In reviewing a special permit application for a personal wireless service facility, the Planning Board may reduce the required fall zone and/or setback distance of the zoning district by as much as 50% of the required distance if it finds that a substantially better design will result from such reduction. In making such a finding, the Planning Board shall consider both the visual and safety impacts of the proposed use.
- Design standards.

F.

The design of a personal wireless service facility determines its visibility and its impact on community character. Height and fall zone/setback standards will have an impact on the visibility of personal wireless service facilities, but they may still be visible from public areas and surrounding residential properties. All personal wireless service facilities shall comply with the following design standards in order to limit negative visual impacts from these facilities through effective design:

(1) Visibility/Camouflage: Personal wireless service facilities shall be camouflaged as follows:

(a) Camouflage by Existing Buildings or Structures:

When a personal wireless service facility extends above the roof height of a building on which it is mounted, every effort shall be made to conceal the facility within or behind existing architectural features to limit its visibility from public ways. Facilities mounted on a roof shall be stepped back from the front facade in order to limit their impact on the building's silhouette.

(b) Personal wireless service facilities that are side mounted shall blend with

the existing building's architecture and, if over 5 square feet, shall be painted or shielded with material which is consistent with the design features and materials of the building.

(c) Camouflage by Vegetation:

If personal wireless service facilities are not camouflaged from public viewing areas by existing buildings or structures, or are not located on existing structures or along a high tension power line right of way, they shall be surrounded by buffers of dense tree growth and understory vegetation in all directions to create an effective year-round visual buffer. Groundmounted personal wireless service facilities shall have a vegetated buffer of 50 feet or more, and of sufficient height to effectively screen the facility. Trees and vegetation may be existing on the subject property or installed as part of the proposed facility or a combination of both. The Planning Board shall determine the types of trees and plant materials and depth of the needed buffer based on site conditions and the height of the proposed tower.

(d) Color:

Personal wireless service facilities that are side-mounted on buildings shall be painted or constructed of materials to match the color of the building material directly behind them.

To the extent that any personal wireless service facility extends above the height of the vegetation immediately surrounding it, it shall be painted in a light gray or light blue hue that blends with sky and clouds.

- (2) Equipment Shelters: Equipment shelters for personal wireless service facilities shall be designed consistent with one of the following design standards:
 - (a) Equipment shelters shall be located in underground vaults; or
 - (b) Equipment shelters shall be designed consistent with traditional Cape Cod architectural styles and materials, with a roof pitch of at least 10/12 and wood clapboard or shingle siding; or

- (c) Equipment shelters shall be camouflaged behind an effective year-round landscape buffer, equal to the height of the proposed building, and/or wooden fence. The Planning Board shall determine if the style of fencing and/or landscape buffer proposed is compatible with the neighborhood.
- (3) Lighting and signage.
 - (a) Personal wireless service facilities shall be lighted only if required by the Federal Aviation Administratior (FAA). Lighting of equipment shelters and any other facilities on site shall be shielded from abutting properties. There shall be total cutoff of all light at the property lines of the parce to be developed, and footcandle measurements at the property line shall be 0.0 initial footcandles when measured at grade.
 - (b) Signs shall be limited to those needed to identify the property and the owner and warn of any danger. All signs shall comply with the requirements of Article X of this bylaw.
 - (c) All ground mounted personal wireless service facilities shall be surrounded by a security barrier.
- (4) Historic buildings and districts.
 - (a) Any personal wireless service facili ties located on or within an historic structure shall not alter the character defining features, distinctive con struction methods, or original historic materials of the building.
 - (b) Any alteration made to an historic structure to accommodate a persona wireless service facility shall be fully reversible.
 - (c) Personal wireless service facilitie within an historic district shall be con cealed within or behind existing architectural features, such as towers cupolas or spires, or shall be located so that they are not visible from pub lic roads and viewing areas within the district.
 - (d) Copies of all plans for any persona wireless service facility proposed in a historic district, or within 1000 feet o a historic district or a structure o place listed on the Massachusett

State Register of Historic Places, shall be provided to the Mashpee Historical Commission before or at the same time that they are submitted to the Town for approval, in order to facilitate their review and comment on the proposal. Applicants are encouraged to meet with the Commission to solicit their input and advice prior to seeking permit approvals.

(5) Scenic roads and vistas.

- Except along an existing cleared high (a) tension power line right-of-way, personal wireless service facilities shall not be located within open areas that are visible from public roads, recreational areas or residential development. As required in Section F.(1) above, all ground-mounted personal wireless service facilities that are not camouflaged by existing buildings or structures shall be surrounded by a buffer of dense tree growth.
- Any personal wireless service facility (b) that is located within 300 feet of a scenic road as designated by the town shall not exceed the height of vegetation at the proposed location. If the facility is located farther than 300 feet from the scenic road, the height regulations described elsewhere in this bylaw will apply.

Environmental standards.

G.

- Personal wireless service facilities shall not (1)be located in wetlands, within 100 feet of wetlands or within 200 feet of rivers.
- No hazardous waste shall be discharged on (2)the site of any personal wireless service facility. If any hazardous materials are to be used on site, there shall be provisions for full containment of such materials. An enclosed containment area shall be provided with a sealed floor, designed to contain at least 110% of the volume of the hazardous materials stored or used on the site.
- Stormwater run-off shall be contained on-(3)site.
- Ground-mounted equipment for personal (4) wireless service facilities shall not generate noise in excess of 50 db at the property line.
- Roof-mounted or side-mounted equipment (5) for personal wireless service facilities shall not generate noise in excess of 50 db at

ground level at the base of the building closest to the antenna.

Radiofrequency Radiation (RFR) Standards. H.

All equipment proposed for a personal wireless service facility shall be authorized per the FCC Guidelines for Evaluating the Environmental Effects of Radioireguency Radiation (FCC Guidelines). Any application for approval of a personal wireless service facility shall include documentation that the FCC Guidelines are being met and a copy of the letter of approval by the Massachusetts Department of Public Health required by 105 CMR 122.000. The Planning Board may require that the applicant fund the services of an RF Engineer to review the documentation regarding the FCC Guidelines.

Application procedures.

I.

(1) Pre-application conference.

Prior to the submission of an application for a special permit under this regulation, the applicant is strongly encouraged to meet with the Planning Board at a public meeting to discuss the proposed personal wireless service facility in general terms and to clarify the filing requirements.

The purpose of the conference is to inform the Board as to the preliminary nature of the proposed personal wireless service facility. As such, no formal filings are required for the pre-application conference. However, the applicant is encouraged to prepare sufficient preliminary architectural and/or engineering drawings to inform the Board of the location of the proposed facility, as well as its scale and overall design.

(2)Application filing requirements.

> In addition to those items required by Subsection 174-24C.(5), other applicable portions of this chapter or the regulations of the Planning Board, the following shall be included in any special permit application for personal wireless service facilities:

Name, address and telephone number (a) of the landowner of the property and of the applicant and any co-applicants as well as any agents for the applicant or co-applicants. Co-applicants may include licensed carriers and tenants for the personal wireless service facility. A licensed carrier shall either be an applicant or a co-applicant.

- (b) Original signatures for the landowner, applicant and all co-applicants applying for the Special Permit. If the landowner, applicant or co-applicant will be represented by an agent, original signature authorizing the agent to represent the applicant and/or coapplicant. Photo reproductions of signatures will not be accepted.
- (c) Location of the subject property, including the name of the nearest road or roads, the property's location relative to those roads, the street address, if any, and the Tax map and block number of the subject property.
- (d) Zoning district designation for the subject parcel.
- (e) A line map to scale showing the lot lines of the subject property and all properties within 300 feet and the location of all buildings, including accessory structures, on all properties shown.
- (f) A town-wide map showing the other existing personal wireless service facilities in the Town and outside the Town within one mile of its corporate limits.
- (g) The proposed locations of all future personal wireless service facilities in the Town on a Town-wide map for this carrier.
- (h) A one-inch-equals-40 feet vicinity plan showing the following:
 - 1) Property lines for the subject property.
 - 2) Property lines of all properties adjacent to the subject property within 300 feet.
 - 3) Tree cover on the subject property and adjacent properties within 300 feet, by dominant species and average height, as measured by or available from a verifiable source.
 - 4) Outline of all existing buildings, including purpose (e.g. residential buildings, garages, accessory structures, etc.) on subject property and all adjacent properties within 300 feet.

- 5) Proposed location of antenna, mount and equipment shelter(s)
- 6) Proposed security barrier, indicating type and extent as well as point of controlled entry.
- 7) Location of all roads, public and private, on the subject property and on all adjacent properties within 300 feet including driveways proposed to serve the personal wireless service facility.
- Distances, at grade, from the proposed personal wireless service facility to each building on the vicinity plan.
- 9) Contours, at each two feet AMSL, for the subject property and adjacent properties within 300 feet.
- 10) All proposed changes to the existing property, including grading, vegetation removal and temporary or permanent roads and driveways.
- 11) Representations, dimensioned and to scale, of the proposed mount, antennas, equipment shelters, cable runs, parking areas and any other construction or development attendant to the personal wireless service facility.
- 12) Lines representing the sight line showing viewpoint (point from which view is taken) and visible point (point being viewed) from "Sight Lines" subsection below.
- (i) Sight lines and photographs as described below:
 - Sight line representation. A sight line representation shall be drawn from any public road within 300 feet and the closest facade of each residential building (viewpoint) within 300 feet to the highest point (visible point) of the personal wireless service facility. Each sight line shall be depicted in profile, drawn at one-inch equals 40 feet. The profiles shall show all intervening trees and buildings. In the event there is only one (or

more) residential building within 300 feet there shall be at least two sight lines from the closest habitable structures or public roads, if any.

- Existing (before condition) photographs. Each sight line shall be illustrated by one four-inch by six-inch color photograph of what can currently be seen from any public road within 300 feet.
- 3) Proposed (after condition). Each of the existing condition photographs shall have the proposed personal wireless service facility superimposed on it to show what will be seen from public roads if the proposed personal wireless service facility is built.

- (j) Siting elevations, or views at-grade from the north, south, east and west for a 50-foot radius around the proposed personal wireless service facility plus from all existing public and private roads that serve the subject property. Elevations shall be at either one-quarter inch equals one foot or one-eighth inch equals one foot scale and show the following:
 - 1) Antennas, mounts and equipment shelter(s), with total elevation dimensions and AGL of the highest point.
 - 2) Security barrier. If the security barrier will block views of the personal wireless service facility, the barrier drawing shall be cut away to show the view behind the barrier.
 - Any and all structures on the subject property.
 - 4) Existing trees and shrubs at current height and proposed trees and shrubs at proposed height at time of installation, with approximate elevations dimensioned.
 - 5) Grade changes, or cuts and fills, to be shown as original grade and new grade line, with twofoot contours above mean sea level.

- (k) Equipment brochures for the proposed personal wireless service facility, such as manufacturer's specifications or trade journal reprints, shall be provided for the antennas, mounts, equipment shelters, cables as well as cable runs and security barrier, if any.
- Materials of the proposed personal wireless service facility specified by generic type and specific treatment (e.g., anodized aluminum, stained wood, painted fiberglass, etc.). These shall be provided for the antennas, mounts, equipment shelters, cables as well as cable runs, and security barrier, if any.
- (m) Colors of the proposed personal wireless service facility represented by a color board showing actual colors proposed. Colors shall be provided for the antennas, mounts, equipment shelters, cables as well as cable runs, and security barrier, if any.
- (n) Dimensions of the personal wireless service facility specified for all three directions: height, width and breadth. These shall be provided for the antennas, mounts, equipment shelters and security barrier, if any.
- (o) Appearance shown by at least two photographic superimpositions of the personal wireless service facility within the subject property. The photographic superimpositions shall be provided for the antennas, mounts, equipment shelters, cables as well as cable runs, and security barrier, if any, for the total height, width and breadth.
- (p) Landscape plan including existing trees and shrubs and those proposed to be added, identified by size of specimen at installation and species.
- (q) If lighting of the site is proposed, the applicant shall submit a manufacturer's computer-generated point-topoint printout, indicating the horizontal footcandle levels at grade, within the property to be developed and twenty-five (25) feet beyond the property lines. The printout shall indicate the location and types of luminaires proposed.
- (r) The applicant shall list location, type and amount (including trace ele-

ments) of any materials proposed for use within the personal wireless service facility that are considered hazardous by the federal, state or local government.

(s) Noise filing requirements.

The applicant shall provide a statement listing the existing and maximum future projected measurements of noise from the proposed personal wireless service facilities, measured in decibels Ldn (logarithmic scale, accounting for greater sensitivity at night), for the following: 1) Existing, or ambient: the measurements of existing noise. 2) Existing plus proposed personal wireless service facilities: maximum estimate of noise from the proposed personal wireless service facility plus the existing noise environment.

Such statement shall be certified and signed by an acoustical engineer, stating that noise measurements are accurate and meet the Noise Standards of this Bylaw.

(t) Radiofrequency Radiation (RFR) filing requirements.

> The applicant shall provide a statement listing the existing and maximum future projected measurements of RFR from the proposed personal wireless service facility, for the following situations: 1) Existing, or ambient: the measurements of existing RFR. 2) Existing plus proposed personal wireless service facilities: maximum estimate of RFR from the proposed personal wireless service facility plus the existing RFR environment.

> The applicant shall also provide a certification, signed by a RF engineer, stating that RFR measurements are accurate and meet FCC Guidelines as specified in the Radiofrequency Radiation Standards sub-section of this Bylaw.

(u) Federal environmental filing requirements.

The National Environmental Policy Act (NEPA) applies to all applications for personal wireless service facilities. NEPA is administered by the FCC via procedures adopted as Subpart 1, Section 1.1301 et seq. (47 Ch. I). The FCC requires that an environmental assessment (EA) be filed with the FCC prior to beginning operations for any personal wireless service facility proposed in, or involving any of, the following: a) wilderness areas, b) wildlife preserves, c) endangered species habitat, d) historical site, e) Native American religious site, f) flood plain, g) wetlands, h) high intensity white lights in residential neighborhoods or i) excessive radiofrequency radiation exposure.

At the time of application filing, an EA that meets FCC requirements shall be submitted to the Town for each personal wireless service facility site that requires such an EA to be submitted to the FCC.

(3) Balloon or crane test.

Within 30 days of the pre-application conference, or within 21 days of filing an application for a Special Permit, the applicant shall arrange for a balloon or crane test at the proposed site to illustrate the height of the proposed facility. The date, time and location of such test shall be advertised in a newspaper of general circulation in the Town at least 14 days, but not more than 21 days prior to the test.

(4) Waiver of filing requirements.

The Board may waive one or more of the application filing requirements of this section if it finds that such information is not needed for a thorough review of the proposed personal wireless service facility.

- J. Co-location.
 - (1) Licensed carriers shall share personal wireless service facilities and sites where feasible and appropriate, thereby reducing the number of personal wireless service facilities that are stand-alone facilities. All applicants for a special permit for a personal wireless service facility shall demonstrate a good faith effort to co-locate with other carriers. Such good faith effort includes:
 - (a) A survey of all existing structures that may be feasible sites for co-locating personal wireless service facilities;
 - (b) Contact with all the other licensed carriers for commercial mobile radio

services operating in Mashpee and each of the adjoining towns; and

- (c) Sharing information necessary to determine if co-location is feasible under the design configuration most accommodating to co-location.
- (2) In the event that co-location is found to be not feasible, a written statement of the reasons for the infeasibility shall be submitted to the Board. The Board may retain a technical expert in the field of RF engineering to verify if co-location at the site is not feasible or is feasible given the design configuration most accommodating to co-location. The cost for such a technical expert will be at the expense of the applicant. The Board may deny a special permit to an applicant that has not demonstrated a good faith effort to provide for co-location.
- (3) If the applicant does intend to co-locate or to permit co-location, the Board shall request drawings and studies that show the ultimate appearance and operation of the personal wireless service facility at full build-out.
- (4) If the Board approves co-location for a personal wireless service facility site, the special permit shall indicate how many facilities of what type shall be permitted on that site. Facilities specified in the special permit approval shall require no further zoning approval. However, the addition of any facilities not specified in the approved special permit shall require a new special permit. Estimates of RFR emissions will be required for all facilities, including proposed and future facilities.
- Modifications.

K.

A modification of a personal wireless service facility will be considered equivalent to an application for a new personal wireless service facility and will require a special permit when the following events apply:

- (1) The applicant and/or co-applicant wants to alter the terms of the special permit by changing the personal wireless service facility in one or more of the following ways: a change in the number of facilities permitted on the site or a change in technology used for the personal wireless service facility.
- (2) The applicant and/or co-applicant wants to add any equipment or additional height not specified in the original design filing.

- L. Monitoring and maintenance.
 - (1) After the personal wireless service facility is operational, the applicant shall submit, within 90 days of beginning operations, and at annual intervals from the date of issuance of the special permit, existing measurements of RFR from the personal wireless service facility. Such measurements shall be signed and certified by a RF engineer, stating that RFR measurements are accurate and meet FCC Guidelines as specified in Section H. of this bylaw.
 - (2) After the personal wireless service facility is operational, the applicant shall submit, within 90 days of the issuance of the Special Permit, and at annual intervals from the date of issuance of the Special Permit, existing measurements of noise from the personal wireless service facility. Such measurements shall be signed by an acoustical engineer, stating that noise measurements are accurate and meet the Noise Standards sub-section of this Bylaw.
 - (3) The applicant and co-applicant shall maintain the personal wireless service facility in good condition. Such maintenance shall include, but shall not be limited to, painting, structural integrity of the mount and security barrier and maintenance of the buffer areas and landscaping.

M Abandonment or discontinuation of use.

(1) At such time that a licensed carrier plans to abandon or discontinue operation of a personal wireless service facility, such carrier will notify the Town by certified U.S. mail of the proposed date of abandonment or discontinuation of operations. Such notice shall be given no less than 30 days prior to abandonment or discontinuation of operations. In the event that a licensed carrier fails to give such notice, the personal wireless service facility shall be considered abandoned upon such discontinuation of operations.

. ;

- (2) Upon abandonment or discontinuation of use, the carrier shall physically remove the personal wireless service facility within 90 days from the date of abandonment or discontinuation of use. "Physically remove" shall include, but not be limited to:
 - (a) Removal of abandoned antennas, mount, equipment shelters and security barriers from the subject property.

- (b) Proper disposal of the waste materials from the site in accordance with local and state solid waste disposal regulations.
- (c) Restoring the location of the personal wireless service facility to its natural or original condition, except that any landscaping and grading shall remain as-is.
- (3) If a carrier fails to remove a personal wireless service facility in accordance with this section of this Bylaw, the Town shall have the authority to enter the subject property and physically remove the facility. The Planning Board may require the applicant to post a bond at the time of construction in an appropriate amount to cover all costs for the removal of the personal wireless service facility in the event the Town must remove the facility.
- N. Reconstruction or replacement of existing towers and monopoles.

Guyed towers, lattice towers, utility towers and monopoles in existence at the time of adoption of this bylaw may be reconstructed, altered, extended or replaced on the same site by special permit, provided that the Planning Board finds that such reconstruction, alteration, extension or replacement will not be substantially more detrimental to the neighborhood and/or the Town than the existing structure. In making such a determination, the Planning Board shall consider whether the proposed reconstruction, alteration, extension or replacement will create public benefits such as opportunities for co-location, improvements in public safety, and/or reduction in visual and environmental impacts. No reconstruction, alteration, extension or replacement shall exceed the height of the existing facility by more than twenty (20) feet.

O. Term of special permit.

A Special Permit issued for any personal wireless service facility over fifty (50) feet in height shall be valid for fifteen (15) years. At the end of that time period, the personal wireless service facility shall be removed by the carrier or a new special permit shall be required."

or take any other action relating thereto.

Submitted by Planning Board

Explanation: This article would establish regulations and a special permit process for "personal wireless service facilities" (wireless phone services, etc., usually involving towers), whose providers have recently

been determined to be public service corporations (public utilities) by the Massachusetts Department of Telecommunications and Energy and which were the subject of specific land use control restraints enacted Congress as part of the the U.S. by Telecommunications Act passed in 1996. The Town may not prohibit their development under the Telecommunications Act but may adopt reasonable guidelines on their location and other characteristics The article is based on a model bylaw prepared for the Cape Cod Commission in response to the provisions of the Telecommunications Act, along with recommendations and copies of bylaws from other Massachusetts towns provided by Town Counsel.

It would restrict the height of such facilities to approx. imately 45 feet except within a Wireless Facility Overlay District, within which towers of 100 to 200 feet would be allowed. That overlay district includes the land within the Commonwealth Electric high tension power line easement as well as all other parts of the town except lands within the National Wildlife Refuge boundaries, within 1000 feet of the mean high water line of a Great Pond or tidal water body, within a Historic District, within 1000 feet of a Historic District or of a place listed in the 1997 Massachusetts State register of Historic places, within the Otis A.N.G.B. Accident Prevention Zone or within 300 feet of the right of way of any designated scenic roadway. Co-location and location of such facilities on existing towers, water towers, steeples etc. is encouraged Visual buffers, camouflage techniques and setbacks ("fall zone") are required and noise and lighting are restricted in order to minimize impacts on neighboring properties.

Motion made by David Leveille.

Motion: I move that Article 35 be approved as print ed in the warrant, except to delete the date "1997' before the phrase "Massachusetts State Register o Historic Places" in Subsection 174-5.C:

Add the phrase ", within the R-3 or R-5 Zonin; Districts" after the phrase "Otis A.N.G.B. Acciden Prevention Zone" in Subsection 174-5.C.;

Replace the phrase "Subsection H.(8)" wit "Subsection H.(9)" and replace "(8)" with "(9)" in sai Subsection;

Replace "174-45.2" with "174-45.3" where it appear:

Amend the definition of "ABOVE GROUND LEVE (AGL)" in Subsection 174-45.3B by replacing it wit the following: "A measurement of height from th natural grade at the structure location to the higher point of the structure;"

Delete the last sentence of Subsection 174-45.3(7)(a

Replace the acronym "AML" with the acrony "MSL" in Subsection 174-45.3.I.(2)(h)(9); Replace the third sentence in Subsection 174-45.3.I.(2)(i)(1) with the following: "The profiles shall show the building façade, all the intervening trees buildings and the the personal wireless service facility.";

Replace the reference "(47 Ch.I)" with the reference "(47CFR Ch. I)"

And delete the phrase "or take any action relating thereto".

planning Board voted at the Public Hearing held on September 16, 1998 4 to 0 for approval.

Motion passes 151 to 2 at 9:19pm.

Article 36

To see if the Town will vote to authorize and empower the Board of Selectmen to prepare a plan laying out and defining Back Road and to accomplish said purpose and for expenses incidental and related thereto, the Town vote to raise and appropriate or transfer from available funds \$9,000 to the Back Road Account, or take any other action relating thereto.

Submitted by the Board of Selectmen

Explanation: This article seeks to prepare a layout for the purpose of making Back Road a Town Road. Improvements to bring Back Road up to Town Road standards are estimated at approximately \$200,000 to be funded at a future Town Meeting.

Recommendation: The Finance Committee recomnends approval.

Motion made by Nancy Caffyn.

Motion: I move the Town vote to authorize and mpower the Board of Selectmen to prepare a plan aying out and defining Back Road and to accomplish aid purpose and for expenses incidental and related hereto, the Town vote to appropriate and transfer from levenue Available for Appropriation \$9,000 to the lack Road Account.

1otion passes at 9:35pm.

rticle 37

o see if the Town will vote to amend the zoning ylaw by adding the words "or Commonwealth of lassachusetts" after the phrase "is acquired by the wn" in the first sentence of Subsection 174-28.C., or ke any other action relating thereto.

Submitted by the Board of Selectmen

xplanation: This subsection currently provides that land is taken by the Town, or donated to the Town, r roadway or utility purposes, the parcel from which e land is acquired will be treated, for the purpose of lculating lot size, setbacks, allowed lot coverage, 2., as if the parcel still included the land that was acquired. This amendment would extend that provision to lands acquired in the same fashion by the state. The intent of the bylaw and amendment is to reduce the costs associated with land acquisition for roadway improvements.

Recommendation: The Finance Committee recommends approval.

Motion made by Curtis Frye.

Motion: I move the Town vote to amend the zoning bylaw by adding the words "or Commonwealth of Massachusetts" after the phrase "is acquired by the town" in the first sentence of Subsection 174-28.C.

Planning Board voted at the Public Hearing held on September 16, 1998 4 to 0 for approval.

Motion passes unanimously at 9:37pm.

Article 38

To see if the Town will vote to authorize and empower the Board of Selectmen to prepare a plan laying out and defining Trout Brook Road, Yellow Perch Circle, Alewife Road, Bass Cove Circle and to accomplish said purpose and for expenses incidental and related thereto, the Town vote to raise and appropriate or transfer from available funds for appropriation a sum of money to the Account and to raise said appropriation the Treasurer with the approval of the Board of Selectmen be authorized to borrow at one time, or from time to time, a sum of money under and pursuant to Chapter 44, Section 7 or 8 or any other enabling authority and to issue bonds and notes of the Town therefor, and further, to see if the Town will vote to raise and appropriate or transfer from available funds a sum of money to the Roadways Account to provide interest and debt issuance expenses, or take any other action relating thereto.

By execution of this Petition, the undersigned property owners hereby release all damage claims against the Town of Mashpee resulting from construction or eminent domain taking of any land necessary for laying out of Trout Brook Road, Yellow Perch Circle, Alewife Road, Bass Cove Circle.

Submitted by Petition

Motion made by Richard Kiernan.

Motion: I move the Town vote to authorize and empower the Board of Selectmen to prepare a plan laying out and defining Trout Brook Road, Yellow Perch Circle, Alewife Road, Bass Cove Circle and to accomplish said purpose and for expenses incidental and related thereto, the Town appropriate and transfer from Revenue Available for Appropriation the sum of \$5,000 to the Trout Brook et.al. Roads Account.

Motion passes at 9:39pm.

Town of Mashpee Planning Board Minutes of Meeting

September 16, 1998

The Town of Mashpee Planning Board Meeting was called to order in Conference Room #1, Mashpee Town Hall, 16 Great Neck Road North, Mashpee, Massachusetts at 7:05 p.m. on Wednesday, September 16, 1998. The Chairman presided over a portion of the Meeting.

Planning Board Members present: Patrick Coffey, Chairman; Dennis Balzarini, Vice Chairman (7:17 p.m.); John Kuchinski, Clerk; James Dorgan; Chance Reichel; and Scott Mitchell, Associate Member.

4

4

H 1

Ι,

11,

Also present: F. Thomas Fudala, Town Planner; Eric Twarog, Assistant Town Planner; and Charles Rowley, Consulting Engineer.

A quorum being present, the Chairman called the Meeting to order and addressed a non-agenda item.

Plan Submission Applicant-Chris Costa

Chris Costa submitted a Plan entitled, "Plan of Land in Mashpee being an Abandonment of Village Way and Lots 5-6, 8, and 13-21, as shown on Land Court Plan #27901D, Dated 4/24/98, prepared for Chris Costa and Associates."

References were being made to Lots 22 and 23. The Town Planner explained Lot 22 does not have the required frontage on Route 130, which makes it necessary to retain Oakwood Road.

The Chairman informed Applicant a cul-de-sac turn around is required for dead-end roads, and that a written request for waiver would be required if it is his intention to not provide for one. Applicant agreed and understood.

The Chairman inquired as to the issues of filing and fee payment.

Applicant requested the Board approve a waiver of the required review fee.

There was some discussion. The Town Planner noted the property is located within a Commercial Zone, and that Lot 7 is not a buildable lot. He also pointed out the fee under discussion is required for services provided by the Consulting Engineer.

The Chairman deferred to Mr. Rowley, who asked if it is the intention of Applicant to construct Oakwood Road. Applicant

stated it was his intent to construct Oakwood Road under the original requirements and up to the center of Lot 22.

Mr. Rowley determined said construction would require a review of the details of construction and an inspection. The Town Planner stated construction would have to meet current Regulations.

The Town Planner inquired about the intersection located at Oakwood Road with regard to drainage issues. Mr. Rowley commented it would be helpful to have a copy of the original profile.

. 18 .

æ 1,

1

11,

11

jil i

nil .

<u>ا</u>ا ا

: II 11

1.18

The Chairman determined Applicant might be entitled to build "as shown", but if less construction is being proposed, the Board would require turn-around safety procedures, drainage, and a profile of what is being proposed.

Mr. Rowley suggested Applicant's submittal include his intent to construct a portion of the road, if that is what is being proposed, for Board review.

With regard to the matter of a waiver/reduction of fees, the Board determined this was not a matter of hardship or non-profit situation and that fees would be required as outlined in the fee schedule.

Applicant filed several copies of the Plan, an Abutters List, and a Fee in the amount of Five Hundred Thirty (\$530.00) Dollars.

The Town Planner noted the submission was for a Definitive Plan, there being no filing of a Preliminary, and suggested a request/approval to waive the Preliminary was in order.

The Chairman entertained a motion be made in this regard.

<u>MOTION:</u> Chance Reichel made a Motion to approve the request to submit a Definitive Plan without having submitted a Preliminary; which Motion was seconded by Dennis Balzarini and so voted unanimously.

MOTION: John Kuchinski made a Motion to schedule a Public Hearing in this matter for October 21, 1998, at 7:15 p.m.; which Motion was seconded by Dennis Balzarini and so voted unanimously. (This matter concluded at 7:23 p.m.)

Board Items Reorganization of Planning Board

Prior to any nominations for Officers, the Chairman informed Board Members that he would be unavailable to attend Planning Board Meetings until the first of December-1998.

-2-

He also stated he had pressing personal business this evening and suggested the Vote be taken with regard to reorganization as it was necessary for him to leave the Meeting early.

Likewise, the Vice Chairman informed the Board of his heavy work schedule, and of the fact that he may not be able to arrive at Meetings on time in the upcoming months.

The Chairman then opened nominations for the positions of Chairman, Vice Chairman, and Clerk.

Dennis Balzarini nominated Patrick Coffey to retain the Office of Chairman; John Kuchinski be nominated for the Office of Vice Chairman; and Chance Reichel be nominated for the Office of Clerk of the Town of Mashpee Planning Board.

14

There being no further nominations put forward, Patrick Coffey accepted the nomination of Chairman, as did John Kuchinski for Vice Chairman and Chance Reichel for Clerk.

<u>MOTION:</u> James Dorgan made a Motion to elect Patrick Coffey as Planning Board Chairman; John Kuchinski as Planning Board Vice Chairman; and Chance Reichel as Planning Board Clerk; which Motion was seconded by Dennis Balzarini and so voted unanimously.

At this point, Mr. Rowley inquired as to his position as Consulting Engineer being terminated as of the first of the new year.

The Chairman reported there has been very little discussion of this situation, and that the time frame for phase-in is going to be longer than initially anticipated. The Chairman then stated his personal preference would be to have Mr. Rowley remain in his position as Consulting Engineer. It was the general consensus of the Planning Board that Mr. Rowley should plan on continuing his position until mid-summer (1999).

> Discussion Carl Grassetti-Northland-Stratford Ponds Final Plans for Bishops Park

The Chairman recognized Mr. Grassetti who submitted information requested by the Board at the time of the Site Visit to Stratford Ponds on June 3, 1998.

The Chairman read from letter addressed to Bill Hauck, from the Planning Board, dated September of 1996, regarding Stratford Pond Condominiums in a previous matter: "Writing to let you know that the Planning Board reviewed the drawing entitled Site Plan, Bishops Park...submitted by Mr. Grassetti at our September 4th Meeting...drawing depicts the location of the buildings that the Board previously agreed to allow the Applicant to revise from their originally approved multi-family configurations to duplex configurations...Board agreed to this revision provided there is no increase in bedroom or dwelling unit quantities from the originally approved configurations and that the revised buildings are configured and located in conformance with this drawing...any questions or comments, do not hesitate to contact. Signed by the Chairman."

Mr. Grassetti stated Plans have been submitted on several occasions to the Consulting Engineer, subject to changes made at his request, final Plans having been submitted in early August. (This matter was recessed at this point.)

The Town Planner took this opportunity to inform the Chairman of the status of the proposed Zoning Articles submitted for publication on the Town Meeting Warrant. He stated the Selectmen have deleted two sections of the Development Agreement Bylaw, which essentially eliminates Planning Board involvement in the process and placing them in control. The Town Planner noted the original proposed Article is that which has been advertised for the Public Hearing this date; and that the change is to be considered radical in terms of the concept.

The Town Planner also informed the Board that the Stormwater Article had also been deleted from the Warrant.

* i ;

] | .

H TE

III 1; 1

1.

進14

 $\pm \mathrm{III}_{\{1\}_{i}}$

The Chairman left the Meeting at this point, appointing the Vice Chairman, John Kuchinski, to preside over the remainder of the Meeting.

Public Hearing Four Zoning Articles for October Town Meeting

The appointed hour having arrived, the Vice Chairman called the 7:00 Public Hearing to order.

(Article #35)- Wireless Facility Overlay District. The Town Planner reviewed said Overlay Map, suggesting those places listed on the 1997 Massachusetts State Register of Historic Places be included.

The Town Planner noted those areas shown in red to be those areas where towers could exceed forty-five (45) feet in height. There was discussion regarding overlay districts located in heavily residential areas of the Town. The Town Planner explained that presently, without regulation, towers could be constructed anywhere within the Town.

There was some discussion relative to restricting the construction of such towers to commercially zoned areas.

The Town Planner noted the Purpose and Intent Sections of the Bylaw, as well as the Definitions Section. He also informed the Board the proposed Bylaw has been reviewed by Town Counsel, who has strongly advised the Town adopt a bylaw in this regard.

The Town Planner reviewed the Permit Process, Height Restrictions/Regulations, Location and Dimensional Requirements, and Exemptions.

There was some discussion regarding the issue of Fall Zones/ Setbacks. It was agreed to delete the final sentence of (7) (a) page -34-.

James Dorgan suggested revising the proposed Bylaw to limit areas to commercial property exclusively, as a means of protecting the residential areas. It was noted that there are areas of commercial/industrial zones adjacent to residential areas.

The Town Planner continued to review Flexibility, Design Standards, Visibility/Camouflage, Camouflage by Vegetation, Color, Equipment Shelters, Lighting and Signage, Historic Buildings and Districts, Scenic Roads and Vistas, Environmental Standards, Radiofrequency Radiation Standards; Application Procedures, and Application Filing Requirements.

There was some discussion regarding profile elevations.

The Town Planner continued to review the remainder of the proposed Bylaw, Balloon or Crane Testing, Co-location, Modifications, Monitoring and Maintenance, Abandonment or Discontinuation of Use, Reconstruction or Replacement of Existing Towers and Monopolies, and Term of Special Permit.

MOTION: Chance Reichel made a Motion to table discussion on the Wireless Facility Bylaw in order to reconvene the matter of Discussion-Carl Grassetti/Northland-Stratford Ponds-Final Plans for Bishops Park; which Motion was seconded by Dennis Balzarini and so voted unanimously.

The Vice Chairman recognized Carl Grassetti, who stated he has provided Mr. Rowley with drawings. The Vice Chairman read into the Record a copy of letter received from Charles L. Rowley, PE, RLS, dated September 2, 1998, to the Attention of Patrick Coffey, Chairman, Regarding Stratford Ponds: "I have reviewed the plans submitted for the revisions to the Stratford Ponds project, namely Mayfair Court and Windsor Point. It is my opinion that the adjustments that have been made are not significant and that there are no major engineering issues in this case. The applicant's engineer, David Thulin, PE has indicated that he is working on a grading solution to the area around the flaired end section FES-1 so that erosion will not be a problem. It would also be advisable that during the construction phase, the proposed sewer cleanouts be cross-ties to building corners as a permanent written record for future use. PVC pipe is to be used for the cleanouts which will be grass

-5-

covered. Finding them without some reference measurements will be difficult."

There was brief discussion of this matter. Mr. Grassetti stated he would respond to Mr. Rowley's letter and that he would also submit as-built drawings.

MOTION: Chance Reichel made a Motion that the Town Planner prepare a similar letter to that which was prepared for the Building Inspector by Anthony E. Ferragamo, A.I.A., dated September 10, 1996, Regarding Stratford Ponds Condominiums, for signature by the Vice Chairman; which Motion was seconded by James Dorgan and so voted unanimously.

MOTION: Chance Reichel made a further Motion to reconvene the Public Hearing-Wireless Facility Overlay District with the intent to finalize discussion of this matter; which Motion was seconded by James Dorgan and so voted unanimously.

James Dorgan stated he would not be able to support the proposed Bylaw if areas of consideration are located within residential zones. He further suggested the overlay district be located strictly in commercial and industrial areas.

The Town Planner suggested he include all Residential Zoning Districts to page -29- C., pending approval of Town Counsel.

11

MOTION: Chance Reichel made a Motion to approve the proposed Article #35, as amended this evening, to include the limitation to commercial and industrial areas, and all other amendments discussed; which Motion was seconded by Dennis Balzarini. (No Vote was taken at this point.)

After brief discussion as to whether or not Town Counsel would advise including all Residential areas be eliminated from the Overlay District, the following Board Members voted to approve the proposed Article be presented at Town Meeting as a means of having some type of Regulation in place, which could be amended at a future date (May Town Meeting) if deemed necessary.

Voting in favor: John Kuchinski, Chance Reichel, and Dennis Balzarini. Opposed: James Dorgan.

Amendments:

1. Page -29- C. - Delete "1997";

2. Include Residential Zoning Districts as areas designated to be outside of the Wireless District, if approved by Town Counsel;

3. Page -30- B. Definitions - "A measurement of height from the natural grade at the structure location to the highest point of the structure."

4. Page -34- (7) Setbacks (a) - The last sentence is to be deleted in its entirety.

5. Page -39- 9) - Delete the "A" to read "MSL";

6. Page -39- (i) 1) - "The profiles shall show the building -6-

facade, all intervening trees, buildings, and personal wireless service facility; and 7. Amended Map.

Development Agreement Bylaw

The Vice Chairman read aloud the Hearing Notice: "Pursuant to Massachusetts General Laws C.40A the Mashpee Planning Board will hold a Public Hearing on Wednesday, September 16, 1998, at 7:00 p.m. at the Mashpee Town Hall, 16 Great Neck Road North to review the following Zoning Amendment Articles for action at the October 5, 1998 Annual Town Meeting.

Summaries of the Articles are as follows: This Article, which is based on a model Bylaw prepared by the Cape Cod Commission would authorize the Town to prepare and enter into long-term development agreements with Developers, the Cape Cod Commission, adjacent Towns and State Agencies. Agreements would be negotiated by the Planning Board, but would require approval by the Selectmen. Such Agreements would be binding contracts spelling out the terms under which the project could be completed over a number of years, (inaudible) structure or other Town facilities and programs of open space and other benefits to the Town would be provided by the Developer, what impact fees would be paid, what protections Developer might obtain from subsequent zoning and regulatory changes, what streamline permitting process procedures might be established to (inaudible) construction done under terms of the Agreement, other items of mutual interest between the parties to this Agreement. The Town's ability to enter into such Agreements is predicated upon the Town having a Local Comprehensive Plan certified by the Cape Cod Commission, as being consistent with the County's Regional Policy Plan.

Article 37-This Article would amend the Zoning Bylaws by adding the words, "or Commonwealth of Massachusetts" after the phrase "...is acquired by the Town..." in the first sentence of subsection 174-28.C. This subsection currently provides that if lands taken by the Town, or donated to the Town, for roadway or utility purposes, the parcel from which the land is acquired will be treated, for the purpose of calculating lot size, setbacks, allowed lot coverage, etc., as if the parcel still included the land that was acquired. This amendment would extend that provision to lands acquired in the same fashion by the State.

MOTION: Dennis Balzarini made a Motion to recommend approval of the proposed Article 37 as submitted; which Motion was seconded by Chance Reichel and so voted unanimously.

Development Agreement Bylaw - The Town Planner informed the Board that the Notice, as previously read by the Vice Chairman, indicates the Planning Board as the negotiating authority. The Article has been changed to delete the Planning Board and name the Board of Selectmen. He suggested contacting Town Counsel in this matter in order to determine whether or not the Notice was legally advertised.

The Town Planner read page -21- being the original Cape Cod Commission model, Sections (3) and (4) of which have been eliminated by the Board of Selectmen.

After lengthy discussion the following Motion was made:

۶.,

1

111

MOTION: Chance Reichel made a Motion that the Planning Board make no recommendation on the proposed Article 30 -Development Agreements; which Motion was seconded by Dennis Balzarini and so voted unanimously.

Article 33-Stormwater Management - The Town Planner informed the Board of the Board of Selectmen's decision to delete this Article.

Minor amendments to Zoning Articles suggested by Town Counsel were deemed acceptable to the Board.

Proposed Land Acquisition-Property adjacent to Town Hall. The Board determined that it would be to the Town's advantage to purchase said property, but that it does not endorse any particular roadway improvement thereto.

MOTION: Chance Reichel made a Motion to this effect, stating the Board is in favor of the land purchase, however, it does not endorse any particular roadway improvement thereto; which Motion was seconded by Dennis Balzarini and so voted unanimously.

> Public Hearing Amendment to Planning Board Rules and Regulations Governing the Subdivision of Land

The appointed hour having arrived, the Vice Chairman called the 7:30 Public Hearing to order.

He read the Notice aloud: "Pursuant to the Massachusetts General Laws C.4l Section 81-Q, the Mashpee Planning Board will hold a Public Hearing on Wednesday, September 16, 1998 at 7:30 p.m., at Mashpee Town Hall, 16 Great Neck Road North, on the following proposed Amendment for the Rules and Regulations governing the Subdivision of Land.

Amendment to Article 12-Fee Schedule - Change "Special Permit - Commercial" to "Special Permit Non - Residential", made by Patrick J. Coffey, Chairman, Mashpee Planning Board.

The Town Planner clarified that at present there is no fee for Industrial Special Permits.

- 8

MOTION: James Dorgan made a Motion to approve the Amendment to Rules and Regulations governing the Subdivision of Land, amendment to Section 12, Fee Schedule, change "Special Permit -Commercial" to "Special Permit - Non-Residential"; which Motion was seconded by Dennis Balzarini and so voted unanimously.

Covenant Release Lipnosky Family Trust-Ed Govoni - Three Ponds Subdivision

The Town Planner noted the lots listed on the Agenda for Release of Covenant are incorrect (#1-#11); there are however, eleven (11) Lots to be released.

The Vice Chairman read into the Record letter dated September 16, 1998, to the Town of Mashpee Planning Board, from Charles L. Rowley, PE, RLS, Regarding Three Ponds Subdivision-Covenant Release: "Dear Chairman Coffey, I have inspected the construction of Preakness Land at the Three Ponds Subdivision off Pimlico Pond Road and find that the construction has not been completed. The base course of pavement has been placed. Grass along the road shoulders if up and in good condition. Storm drainage has been completed along the road but there are some corrections that need to be made. At the entrance to Preakness Lane on Pimlico Pond road there is a catch basin which is much. lower than the surrounding pavement. Instead of blending in the pavement on Preakness to the pavement on Pimlico Pond Road, the existing 12" berm was left in place. This makes for a very abrupt transition in the road surface as well as a dangerous situation with the catch basin grate. the road intersection does not include the customary 20' radius at the edge of pavement. No street monumentation was observed and I have no letter indicating that bounds have been set. It is my recommendation that the request for release of lots should not be granted until a proper form of security for the remainder of construction has been presented and approved by the Planning Board. I also notice that the request is for Lots 1-11. Many of the lots requested do not front on Preakness Lane but front instead on Cove Road. A full inspection of this road has not been completed."

After brief discussion it was agreed upon by all Board Members to forward a copy of the Consulting Engineer's letter to the Applicant, ask him to contact the Consulting Engineer directly for any further comment, and to continue this matter to the October 7, 1998 Meeting.

MOTION: Dennis Balzarini made a Motion to that effect, stating the Consulting Engineer's letter is to be forwarded to the Applicant with instructions to contact the Consulting Engineer directly for further comments, and to continue this matter to October 7, 1998; which Motion was seconded by Chance Reichel and so voted unanimously.

Covenant Release

Anthony LaCava-Baxter & Nye - Quashnet Valley Release of Covenant 2-Lots on New Great Hay Road

The Town Planner determined Applicant has not provided a Covenant Release form. The Vice Chairman suggested deleting this matter from the Agenda, having the Planning Department contact Applicant to request Release form, and remove this matter from the Agenda until further contact from Applicant. All Board Members were in agreement.

Non-Agenda Items Asher's Heights Subdivision

The Vice Chairman informed Board Members of a report from the Consulting Engineer regarding the Asher's Heights Subdivision in which Mr. Rowley suggested the remaining funds in the amount of Seven Thousand Two Hundred Eighteen (\$7,218.00) Dollars not be released until such time as the drainage problem at the intersection is rectified, based upon inspection made at the direction of the Planning Board during the September 2, 1998 Meeting.

١,

1 18

After some discussion, the Town Planner suggested the Board approve release of said \$7,218.00 subject to the Consulting Engineer's final satisfactory inspection of the drainage/ repaving. Planning Board Members were asked to sign the Release form, which is to be held in escrow by the Town Planner until such time as the Consulting Engineer makes a final inspection and signs the Release form as well.

MOTION: Chance Reichel made a Motion to approve Planning Board signatures on the Release form, which form is to be held in escrow by the Town Planner until such time as the Consulting Engineer completes a satisfactory inspection of the drainage in question; which Motion was seconded by Dennis Balzarini and so voted unanimously.

Shoestring Bay Estates

The Vice Chairman read into the Record letter dated September 16, 1998, from Charles L. Rowley, PE, RLS, Regarding Shoestring Bay Estates, Plan Revisions: "Dear Chairman Coffey, I have reviewed the submittal for the changes which were requested for the connecting roadway between Shoestring Bay Estates and Willowbend. Stormwater calculations and a revised plan were prepared by Earth Tech and my concerns have been satisfied with regard to this item. With regard to the construction of Shoestring Bay Estates, if wording can be included within the modification of the special permit to include the appropriate repaving of the roadways, this would seem sufficient."

Correspondence

At this point, the Town Planner reviewed amendments he intends to make on Town Meeting floor as they pertain to the Commercial Center Bylaw, as advised by Town Counsel.

The Town Planner advised Board Members of a Public Hearing, Mashpee Commons DRI, Mashpee Town Hall, at 7:00 p.m. the following evening.

Approval of Minutes

MOTION: Dennis Balzarini made a Motion to approve the revised Minutes of the August 5, 1998 Meeting as submitted by the Board Secretary; which Motion was duly seconded and so voted unanimously.

Adjournment

There being no further Planning Board business to address, the Vice Chairman entertained a motion be made to adjourn the Meeting.

MOTION: Chance Reichel made a Motion to adjourn the Meeting; which Motion was seconded by Dennis Balzarini and so voted unanimously.

(The September 16, 1998 Mashpee Planning Board Meeting was thereupon dissolved at 10:12 p.m.)

_ Respectfully submitted,

e (ricana 01

 $P_{1,2}$

 * \mathbf{i}_{1}

<u>ا ا</u>

11 11

1-(

 Henrietta DeArcangelis Board Secretary

Wireleless Overlay District Article etc.

THOMAS FUDALA <tomfudala@comcast.net>

Mon 9/24/2018, 5:26 PM

To: Wayne E. Taylor <wtaylor@mashpeema.gov>

Cc: rccollins@mashpeema.gov <rccollins@mashpeema.gov>;

mwaygan@yarmouth.ma.us <mwaygan@yarmouth.ma.us>; Mary Waygan <waygan@hotmail.com>; Evan Lehrer <ELehrer@mashpeema.gov>

5 attachments (1 MB)

Form 7 Maura Healy.doc; Wireless Article 35 as adopted 10-5-98.doc; Wireless Article 35 Motion per Town Moderator.doc; PB Report on 10-5-98 Zoning Articles.doc; Wireless Overlay District.pdf;

Wayne:

Following up on the Wireless Facility Overlay District expansion article I wrote for you, that the Selectmen voted to place on the October warrant:

1) It is my understanding that the Planning Board hearing will be held on October 3 and that proper advertising will be placed in the Cape Cod Times.

2) Please make sure, if it already hasn't been done, that a formal submission memo, with the article attached, is transmitted to the Planning Board, as was done for the previous zoning articles. When the Town Clerk has to submit "Form 7" (see attached) to the Attorney General for her approval of the articles, the date of that memo will be part of the required information, along with other dates of advertising, required mailing of notices of all the proposed zoning amendments to DHCD, the Cape Cod Commission and the Planning Boards of the surrounding towns, along with copies of many of the documents, including the original articles as submitted to the Planning Board for their review. I'm hoping Evan is familiar with these requirements and has taken care of them.

3) With regard to the current extent of the Overlay District, also attached is the current by-law as adopted (article 35) at the October 5, 1998 Town Meeting. The article was amended on the floor to, among other things, exclude the R-3 and R-5 Zoning Districts from the Overlay District (floor motion attached), apparently based on testimony at the Planning Board's public hearing and the recommendation of the Planning Board (also attached). The map I gave you, of which copies remain in the Planning Office, was apparently done by Assistant Planner Eric Smith, who wrote the article, prior to the Town Meeting amendment to the extent of the Overlay District. That is why, as I indicated when I gave a copy to you, it looked like it covered too much of the town (but in any case, NOT the Town's property on Red Brook Road, which was originally excluded because it lies within the boundaries of the Mashpee National Wildlife Refuge (drawn by me with guidance from the US Fish & Wildlife Service and Congressman Studds' office and adopted by legislation approved by the Congress and signed by President Clinton) and further excluded by the floor amendment at Town Meeting which excluded lands in the R-3 District. It should be noted that the boundaries of the National Wildlife Refuge, as referenced in the By-law, are just that, and have no relation to whether or not lands within the boundary have been subsequently protected as conservation land. I have found and attached a correct map of the Wireless Overlay District as based on the amended article as adopted at the 10-5-98 Town Meeting.

Just as a heads up, when the Form 7 and attached Planning Board public hearing notices go to the Attorney General, there could be a problem, as the notices, which were published on September 7 and 14, do not all reflect the correct warrant article numbers (which is why I never included warrant article

numbers in previous zoning hearing notices, just simple numerical listing, as warrant article numbers often tend to change after zoning articles are submitted to the Planning Board) which could be found to have mislead voters. Evan's original article, on which the notice was based, has been significantly (though for the better) changed as it was re-submitted as a Selectmen's article at their September 11 meeting and the article description is no longer completely accurate (keep in mind that the published notice on September 7 said the complete text of all the zoning articles could be viewed by voters at the offices of the Town Clerk and Town Planner - text which has now been changed). There are also descriptions of some of the ZBA articles which say absolutely nothing about the actual content of the articles and the changes proposed to be made to the By-laws, which the AG may also find to have been inadequate notice to the voters. I would strongly suggest that Pat Costello be asked to review the notices and opine on their adequacy.

Let me know if you need any additional information or have questions.

Tom Fudala, AICP

Mashpee Citizen

Article 35 Motion per Town Moderator Ruling

I move that article 35 be approved as printed in the warrant, except to

delete the date "1997" before the phrase "Massachusetts State Register of Historic Places" in Subsection 174-5.C.;

→ add the phrase ", within the R-3 or R-5 Zoning Districts" after the phrase "Otis A.N.G.B. Accident Prevention Zone" in Subsection 174-5.C.;

replace the phrase "Subsection H.(8)" with "Subsection H.(9)" and replace "(8)" with "(9)" in said Subsection;

replace "174-45.2" with "174-45.3" where it appears;

amend the definition of "ABOVE GROUND LEVEL (AGL)" in Subsection 174-45.3.B. by replacing it with the following: "A measurement of height from the natural grade at the structure location to the highest point of the structure.";

delete the last sentence of Subsection 174-45.3.E.(7)(a);

replace the acronym "AMSL" with the acronym "MSL" in Subsection 174-45.3.I.(2)(h)9);

replace the third sentence of in Subsection 174-45.3.I.(2)(i)1) with the following: "The profiles shall show the building façade, all intervening trees and buildings and the personal wireless service facility.";

replace the reference "(47 Ch. I)" with the reference "(47CFR Ch. I)"

and delete the phrase "or take any other action relating thereto".

October 5, 1998 Town Meeting Planning Board Report and Recommendations on Zoning Articles

Article 26 (Campground Expansion)

At August 19 Public Hearing voted 3-1 to recommend approval.

Article 27 (Cluster filing process)

At August 19 Public Hearing voted 4-0 to recommend approval.

Article 28 (Cluster lot size and open space %)

At August 19 Public Hearing voted 4-0 to recommend approval.

Article 29 (Commercial Centers)

At August 19 Public Hearing voted 3-0 to recommend approval.

Article 30 (Development Agreements)

At September 16 Public Hearing voted 4-0 to make no report.

As 21 days have not passed since the Board's public hearing on this article, and the Board makes no report, Town Meeting may not vote to adopt this article per Chapter 40A, Section 5 of Mass. General Laws. The Planning Board vote was based on the fact that two paragraphs of the article were removed from the warrant after the Board had advertised its public hearing and that the removal of those paragraphs eliminated the requirement for Planning Board approval of such agreements. Removal of those paragraphs effectively substituted the Board of Selectmen for the Planning Board as the board primarily responsible for development of such agreements, conflicting with the Planning Board's statutory authority over special permit and subdivision review and approval of such development projects.

Article 31 (OSID Bedroom Definition)

At August 19 Public Hearing voted 3-0 to recommend approval.

Article 32 (OSID "Technical Amendments")

At August 19 Public Hearing voted 3-0 to recommend approval.

Article 33 (OSIP Map Change)

At August 19 Public Hearing voted 3-0 to recommend approval.

Article 34 (Special Permit requirement for public utilities) At August 19 Public Hearing voted 4-0 to recommend approval.

Article 35 (Wireless Facilities)

At September 16 Public Hearing voted 4-0 to <u>recommend approval if amendment</u> <u>reducing area of overlay district is allowed on the floor</u>, and 3-1 <u>to recommend</u> <u>approval if such an amendment is not allowed</u>.

Article 37 (ROW credit for state highways)

At September 16 Public Hearing voted 4-0 to recommend approval.

Article 35 as approved by 10-5-98 ATM

To see if the Town will vote to amend the zoning bylaw by adding the following new sections and subsections:

Add the following to the listing of zoning districts contained in Section 174-4:

"Wireless Facility Overlay District".

Add the following new Subsection C. to Section 174-5 Establishment of Zoning Map:

"C. The Wireless Facility Overlay District shall include 1) the area within the 210 foot wide Commonwealth Electric Company transmission line easement running generally east-west between the Falmouth town line and the Barnstable town line, 2) all other lands in the Town which are not located within the boundaries of the Mashpee National Wildlife Refuge, within 1000 feet of the mean high water line of a Great Pond or a tidal water body, within Historic Districts, within 1000 feet of a Historic District or of structures or places listed in the 1997 Massachusetts State Register of Historic Places, within the Otis A.N.G.B. Accident Prevention Zone, within the R-3 or R-5 Zoning Districts or within 300 feet of the right of way of any designated scenic roadway."

Add the following new Subsection H. **(9)** to Section 174-25. Table of Use Regulations:

"(9) Personal wireless service facilities, subject to the provisions of Section 174-45.2."

and indicate by inserting the letters "SP" in all columns of the Table of Use Regulations that such use is allowed by special permit in all zoning districts.

Add the following new Section 174-45.**2-3**:

"174-45.2-3. Personal Wireless Service Facilities.

A. Purpose and intent.

For the purpose of minimizing the visual and environmental impacts, as well as any potential deleterious impact on property values, of personal wireless service facilities, no personal wireless service facility shall be placed, constructed or modified within the town except in conformance with the requirements of this section, in conjunction with other regulations adopted by the Town, including historic district regulations, design review and other bylaws and regulations designed to encourage appropriate land use, environmental protection, and provision of adequate infrastructure development.

The regulation of personal wireless service facilities is consistent with the purposes of the Mashpee zoning bylaw and the planning efforts of the town through its comprehensive plan, including those intended to further the conservation and preservation of developed, natural and undeveloped areas, wildlife, flora and habitats for endangered species, the preservation of coastal resources, protection of natural resources, balanced economic growth, the provision of adequate capital facilities, the coordination of the provision of adequate capital facilities with the achievement of other goals and the preservation of historical, cultural, archaeological, architectural and recreational values.

In accordance with the requirements of 47 U.S.C. s332(c)(7)(B), and until these requirements are modified, amended or repealed, in regulating the placement, construction and modification of personal wireless service facilities, the administration of this bylaw shall not be undertaken in a manner which unreasonably discriminates among providers of functionally equivalent services or prohibits, or has the effect of prohibiting, the provision of personal wireless service facilities shall be in writing and supported by substantial evidence contained in a written record. Furthermore, this bylaw may not regulate the placement, construction and modification of personal wireless of the environmental effects of radio frequency emissions to the extent that such facilities comply with the Federal Communications Commission's regulations concerning such emissions.

B. Definitions.

In addition to the definitions contained in Section 174-3, the following shall apply to Personal Wireless Service Facilities:

ABOVE GROUND LEVEL (AGL) - A measurement of height from the natural grade **at the structure location of a site** to the highest point of **a the** structure.

ANTENNA - The surface from which wireless radio signals are sent and received by a personal wireless service facility.

CAMOUGLAGED - A personal wireless service facility that is disguised, hidden, part of an existing or proposed structure or placed within an existing or proposed structure is considered "camouflaged."

CARRIER - A company that provides wireless services.

CO-LOCATION - The use of a single mount on the ground by more than one carrier (vertical co-location) and/or several mounts on an existing building or structure by more than one carrier.

CROSS-POLARIZED (OR DUAL-POLARIZED) ANTENNA - A low mount that has three panels flush mounted or attached very close to the shaft.

ELEVATION - The measurement of height above mean sea level.

ENVIRONMENTAL ASSESSMENT (EA) - An EA is the document required by the Federal Communications Commission (FCC) and the National Environmental Policy Act (NEPA) when a personal wireless service facility is placed in certain designated areas.

EQUIPMENT SHELTER - An enclosed structure, cabinet, shed or box at the base of the mount within which are housed batteries and electrical equipment.

FALL ZONE - The area on the ground within a prescribed radius from the base of a personal wireless service facility. The fall zone is the area within which there is a potential hazard from falling debris (such as ice) or collapsing material.

FUNCTIONALLY EQUIVALENT SERVICES - Cellular, Personal Communication Services (PCS), Enhanced Specialized Mobile Radio, Specialized Mobile Radio and Paging.

GUYED TOWER - A monopole or lattice tower that is tied to the ground or other surface by diagonal cables.

LATTICE TOWER - A type of mount that is self-supporting with multiple legs and cross-bracing of structural steel.

LICENSED CARRIER - A company authorized by the FCC to construct and operate a commercial mobile radio services system.

MONOPOLE - The type of mount that is self-supporting with a single shaft of wood, steel or concrete and a platform (or racks) for panel antennas arrayed at the top and/or along its length.

MOUNT - The structure or surface upon which antennas are mounted, including the following four types of mounts:

(1) Roof-mounted. Mounted on the roof of a building.

(2) Side-mounted. Mounted on the side of a building.

(3) Ground-mounted. Mounted on the ground.

(4) Structure-mounted. Mounted on a structure other than a building.

OMNIDIRECTIONAL (WHIP) ANTENNA - A thin rod that beams and receives a signal in all directions.

PANEL ANTENNA - A flat surface antenna, usually developed in multiples.

PERSONAL WIRELESS SERVICE FACILITY - Facility for the provision of personal wireless services, as defined by the Telecommunications Act, including towers, poles, antennae and appurtenant structures.

PERSONAL WIRELESS SERVICES - The three types of services regulated by this bylaw: commercial mobile radio services, unlicensed wireless services and common carrier wireless exchange access services.

RADIOFREQUENCY (RF) ENGINEER - An engineer specializing in electrical or microwave engineering, especially the study of radiofrequencies.

RADIOFREQUENCY RADIATION (RFR) - The emissions from personal wireless service facilities. (Regulated by the FCC "Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation").

SECURITY BARRIER - A locked, impenetrable wall, fence or berm that completely seals an area from unauthorized entry or trespass.

SEPARATION -The distance between one carrier's array of antennas and another carrier's array.

C. Permit process.

A personal wireless service facility shall require a building permit in all cases and may be permitted as follows:

- (1) A personal wireless service facility may be located on any existing guyed tower, lattice tower, monopole, electric utility transmission tower, fire tower or water tower, provided that the installation of the new facility does not increase the height of the existing structure except as provided in Subsection E.(5) below. Such installations shall not require a special permit but shall require plan review (PR) approval by the town under the provisions of Subsection 174-24B.
- (2) Otherwise, no personal wireless service facility involving construction of one or more ground or building (roof or side) mounts shall be located in the town except upon issuance of a special permit by the Planning Board under the provisions of Subsection 174-24(C) and of this section.
- (3) A personal wireless service facility that exceeds the height restrictions of Subsections E.(1) through (5) may be permitted by special permit, as specified in Subsection C.(2), in a designated Wireless Service Overlay District provided that the proposed facility complies with the height restrictions of Section E.(6), and all of the setback and other regulations set forth in this section.
- (4) Any applicant must demonstrate that the proposed facility is necessary in order to provide adequate service to the public.

D. Location.

Applicants seeking approval for personal wireless service facilities shall comply with the following:

(1) If feasible, personal wireless service facilities shall be located on existing structures, including but not limited to buildings, water towers, existing telecommunications facilities, utility poles and towers, and related facilities, provided that such installation preserves the character and integrity of those structures. In particular, applicants are urged to consider use of existing telephone and electric utility structures as sites for one or more personal wireless service facilities. The applicant shall have the burden of proving that there are no feasible existing structures upon which to locate.

- (2) If the applicant demonstrates that it is not feasible to locate on an existing structure, personal wireless service facilities shall be designed so as to be camouflaged to the greatest extent possible, including but not limited to: use of compatible building materials and colors, screening, landscaping and placement within trees.
- (3) The applicant shall submit documentation of the legal right to install and use the proposed facility mount at the time of application for plan review or special permit.
- E. Dimensional requirements.

Personal wireless service facilities shall comply with the following requirements:

- (1) Height, General: Regardless of the type of mount, personal wireless service facilities shall be no higher than ten feet above the average height of buildings within 300 feet of the proposed facility. In addition, the height of a personal wireless service facility shall not exceed by more than ten feet the height limits of the zoning district in which the facility is proposed to be located, unless the facility is completely camouflaged such as within a flagpole, steeple, chimney, or similar structure. Personal wireless service facilities may be located on a building that is legally non-conforming with respect to height, or has received a height variance, provided that the facilities do not project above the existing building height.
- (2) Height, Ground-Mounted Facilities: Ground-mounted personal wireless service facilities shall not project higher than ten feet above the average building height or, if there are no buildings within 300 feet, these facilities shall not project higher than ten feet above the average tree canopy height, measured from ground level (AGL). If there are no buildings within 300 feet of the proposed site of the facility, all ground-mounted personal wireless service facilities shall be surrounded by dense tree growth to screen views of the facility in all directions. These trees may be existing on the subject property or planted on site.
- (3) Height, Side- and Roof-Mounted Facilities: Side- and roof-mounted personal wireless service facilities shall not project more than ten feet above the height of an existing building nor project more than ten feet above the height limit of the zoning district within which the facility is located. Personal wireless service facilities may be located on an existing building that is legally nonconforming with respect to height, or has received a height variance, provided that the facilities do not project above the existing building height.
- (4) Height, Existing Structures: New antennas located on any of the following structures existing on the effective date of this bylaw shall be exempt from the height restrictions of this bylaw provided that there is no increase in height of the existing

structure as a result of the installation of a personal wireless service facility: water towers, guyed towers, lattice towers, fire towers and monopoles.

- (5) Height, Existing Structures, (Utility): New antennas located on any of the following existing structures shall be exempt from the height restrictions of this bylaw, provided that there is no more than a twenty (20) foot increase in the height of the existing structure as a result of the installation of a personal wireless service facility: electric transmission and distribution towers, telephone poles and similar existing utility structures. This exemption shall not apply in Historic Districts, within 300 feet of structures or places listed in the Massachusetts State Register of Historic Places, within 150 feet of the right-of-way of any designated scenic roadway, or within 300 feet of any Great Pond or tidal water body.
- (6) Height, Wireless Facility Overlay District: Within the Wireless Facility Overlay District (as described in Subsection 174-5.C.), personal wireless service facilities of up to 100 feet in height may be permitted by Special Permit, except that the Planning Board may grant a waiver to allow a height of up to 200 feet where circumstances warrant (e.g. no serious impact on neighboring properties, residential areas, historic districts, historic places or scenic vistas, along with the opportunity to eliminate a larger number of towers of lower height which might result in such impacts). Monopoles are the preferred type of mount for such taller structures. Such structures shall comply with all setback and Special Permit Regulations set forth in this Bylaw.
- (7) Setbacks: All personal wireless service facilities and their equipment shelters shall comply with the building setback provisions of the zoning district in which the facilities are located. In addition, the following setbacks shall be observed:
 - (a) In order to ensure public safety and prevent hazards to people and neighboring property from potential facility collapse or falling ice or other debris, the minimum distance from the base of any ground-mounted personal wireless service facility to any property line, road, habitable dwelling, business or institutional use, or public recreational area shall be the height of the facility/mount, including any antennas or other appurtenances. This setback is considered a "fall zone".

- (b) In the event that an existing structure is proposed as a mount for a personal wireless service facility, a fall zone shall not be required, but the setback provisions of the zoning district shall apply. In the case of pre-existing non-conforming structures, personal wireless service facilities and their equipment shelters shall not increase any non-conformities, except as provided in Subsection (8) below.
- (8) Flexibility: In reviewing a special permit application for a personal wireless service facility, the Planning Board may reduce the required fall zone and/or setback distance of the zoning district by as much as 50% of the required distance if it finds that a substantially better design will result from such reduction. In making such a finding, the Planning Board shall consider both the visual and safety impacts of the proposed use.

F. Design standards.

The design of a personal wireless service facility determines its visibility and its impact on community character. Height and fall zone/setback standards will have an impact on the visibility of personal wireless service facilities, but they may still be visible from public areas and surrounding residential properties. All personal wireless service facilities shall comply with the following design standards in order to limit negative visual impacts from these facilities through effective design:

(1) Visibility/Camouflage: Personal wireless service facilities shall be camouflaged as follows:

(a) Camouflage by Existing Buildings or Structures:

When a personal wireless service facility extends above the roof height of a building on which it is mounted, every effort shall be made to conceal the facility within or behind existing architectural features to limit its visibility from public ways. Facilities mounted on a roof shall be stepped back from the front facade in order to limit their impact on the building's silhouette.

- (b) Personal wireless service facilities that are side mounted shall blend with the existing building's architecture and, if over 5 square feet, shall be painted or shielded with material which is consistent with the design features and materials of the building.
- (c) Camouflage by Vegetation:

If personal wireless service facilities are not camouflaged from public viewing areas by existing buildings or structures, or are not located on existing structures or along a high tension power line right of way, they shall be surrounded by buffers of dense tree growth and understory vegetation in all directions to create an effective year-round visual buffer. Ground-mounted personal wireless service facilities shall have a vegetated buffer of 50 feet or more, and of sufficient height to effectively screen the facility. Trees and vegetation may be existing on the subject property or installed as part of the proposed facility or a combination of both. The Planning Board shall determine the types of trees and plant materials and depth of the needed buffer based on site conditions and the height of the proposed tower.

(d) Color:

Personal wireless service facilities that are side-mounted on buildings shall be painted or constructed of materials to match the color of the building material directly behind them.

To the extent that any personal wireless service facility extends above the height of the vegetation immediately surrounding it, it shall be painted in a light gray or light blue hue that blends with sky and clouds.

- (2) Equipment Shelters: Equipment shelters for personal wireless service facilities shall be designed consistent with one of the following design standards:
 - (a) Equipment shelters shall be located in underground vaults; or
 - (b) Equipment shelters shall be designed consistent with traditional Cape Cod architectural styles and materials, with a roof pitch of at least 10/12 and wood clapboard or shingle siding; or
 - (c) Equipment shelters shall be camouflaged behind an effective year-round landscape buffer, equal to the height of the proposed building, and/or wooden fence. The Planning Board shall determine if the style of fencing and/or landscape buffer proposed is compatible with the neighborhood.
- (3) Lighting and signage.
 - (a) Personal wireless service facilities shall be lighted only if required by the Federal Aviation Administration (FAA). Lighting of equipment shelters and any other facilities on site shall be shielded from abutting properties. There shall be total cutoff of all light at the property lines of the parcel to be developed, and footcandle measurements at the property line shall be 0.0 initial footcandles when measured at grade.
 - (b) Signs shall be limited to those needed to identify the property and the owner and warn of any danger. All signs shall comply with the requirements of Article X of this bylaw.
 - (C) All ground mounted personal wireless service facilities shall be surrounded by a security barrier.

(4) Historic buildings and districts.

- (a) Any personal wireless service facilities located on or within an historic structure shall not alter the character-defining features, distinctive construction methods, or original historic materials of the building.
- (b) Any alteration made to an historic structure to accommodate a personal wireless service facility shall be fully reversible.
- (c) Personal wireless service facilities within an historic district shall be concealed within or behind existing architectural features, such as towers, cupolas or spires, or shall be located so that they are not visible from public roads and viewing areas within the district.
- (d) Copies of all plans for any personal wireless service facility proposed in a historic district, or within 1000 feet of a historic district or a structure or place listed on the Massachusetts State Register of Historic Places, shall be provided to the Mashpee Historical Commission before or at the same time that they are submitted to the Town for approval, in order to facilitate their review and comment on the proposal. Applicants are encouraged to meet with the Commission to solicit their input and advice prior to seeking permit approvals.
- (5) Scenic roads and vistas.
 - (a) Except along an existing cleared high tension power line right-of-way, personal wireless service facilities shall not be located within open areas that are visible from public roads, recreational areas or residential development. As required in Section F.(1) above, all ground-mounted personal wireless service facilities that are not camouflaged by existing buildings or structures shall be surrounded by a buffer of dense tree growth.
 - (b) Any personal wireless service facility that is located within 300 feet of a scenic road as designated by the town shall not exceed the height of vegetation at the proposed location. If the facility is located farther than 300 feet from the scenic road, the height regulations described elsewhere in this bylaw will apply.
- G. Environmental standards.
- (1) Personal wireless service facilities shall not be located in wetlands, within 100 feet of wetlands or within 200 feet of rivers.
- (2) No hazardous waste shall be discharged on the site of any personal wireless service facility. If any hazardous materials are to be used on site, there shall be provisions for full containment of such materials. An enclosed containment area shall be provided with a sealed floor, designed to contain at least 110% of the volume of the hazardous materials stored or used on the site.
- (3) Stormwater run-off shall be contained on-site.

- (4) Ground-mounted equipment for personal wireless service facilities shall not generate noise in excess of 50 db at the property line.
- (5) Roof-mounted or side-mounted equipment for personal wireless service facilities shall not generate noise in excess of 50 db at ground level at the base of the building closest to the antenna.
- H. Radiofrequency Radiation (RFR) Standards.

All equipment proposed for a personal wireless service facility shall be authorized per the FCC *Guidelines for Evaluating the Environmental Effects of Radioireguency Radiation* (FCC Guidelines). Any application for approval of a personal wireless service facility shall include documentation that the FCC Guidelines are being met and a copy of the letter of approval by the Massachusetts Department of Public Health required by 105 CMR 122.000. The Planning Board may require that the applicant fund the services of an RF Engineer to review the documentation regarding the FCC Guidelines.

- I. Application procedures.
- (1) Pre-application conference.

Prior to the submission of an application for a special permit under this regulation, the applicant is strongly encouraged to meet with the Planning Board at a public meeting to discuss the proposed personal wireless service facility in general terms and to clarify the filing requirements.

The purpose of the conference is to inform the Board as to the preliminary nature of the proposed personal wireless service facility. As such, no formal filings are required for the pre-application conference. However, the applicant is encouraged to prepare sufficient preliminary architectural and/or engineering drawings to inform the Board of the location of the proposed facility, as well as its scale and overall design.

(2) Application filing requirements.

In addition to those items required by Subsection 174-24C.(5), other applicable portions of this chapter or the regulations of the Planning Board, the following shall be included in any special permit application for personal wireless service facilities:

- (a) Name, address and telephone number of the landowner of the property and of the applicant and any co-applicants as well as any agents for the applicant or co-applicants. Co-applicants may include licensed carriers and tenants for the personal wireless service facility. A licensed carrier shall either be an applicant or a co-applicant.
- (b) Original signatures for the landowner, applicant and all co-applicants applying for the Special Permit. If the landowner, applicant or co-applicant will be represented by an agent, original signature authorizing the agent to

represent the applicant and/or co-applicant. Photo reproductions of signatures will not be accepted.

- (c) Location of the subject property, including the name of the nearest road or roads, the property's location relative to those roads, the street address, if any, and the Tax map and block number of the subject property.
- (d) Zoning district designation for the subject parcel.
- (e) A line map to scale showing the lot lines of the subject property and all properties within 300 feet and the location of all buildings, including accessory structures, on all properties shown.
- (f) A town-wide map showing the other existing personal wireless service facilities in the Town and outside the Town within one mile of its corporate limits.
- (g) The proposed locations of all future personal wireless service facilities in the Town on a Town-wide map for this carrier.
- (h) A one-inch-equals-40 feet vicinity plan showing the following:

1) Property lines for the subject property.

2) Property lines of all properties adjacent to the subject property within 300 feet.

3) Tree cover on the subject property and adjacent properties within 300 feet, by dominant species and average height, as measured by or available from a verifiable source.

4) Outline of all existing buildings, including purpose (e.g. residential buildings, garages, accessory structures, etc.) on subject property and all adjacent properties within 300 feet.

5) Proposed location of antenna, mount and equipment shelter(s).

6) Proposed security barrier, indicating type and extent as well as point of controlled entry.

7) Location of all roads, public and private, on the subject property and on all adjacent properties within 300 feet including driveways proposed to serve the personal wireless service facility.

8) Distances, at grade, from the proposed personal wireless service facility to each building on the vicinity plan.

9) Contours, at each two feet **#**MSL, for the subject property and adjacent properties within 300 feet.

10) All proposed changes to the existing property, including grading, vegetation removal and temporary or permanent roads and driveways.

11) Representations, dimensioned and to scale, of the proposed mount, antennas, equipment shelters, cable runs, parking areas and any other construction or development attendant to the personal wireless service facility.

12) Lines representing the sight line showing viewpoint (point from which view is taken) and visible point (point being viewed) from "Sight Lines" subsection below.

(i) Sight lines and photographs as described below:

1) Sight line representation. A sight line representation shall be drawn from any public road within 300 feet and the closest facade of each residential building (viewpoint) within 300 feet to the highest point (visible point) of the personal wireless service facility. Each sight line shall be depicted in profile, drawn at one inch equals 40 feet. The profiles shall show **the building façade**, all intervening trees and buildings **and the personal wireless service facility**. In the event there is only one (or more) residential building within 300 feet there shall be at least two sight lines from the closest habitable structures or public roads, if any.

2) Existing (before condition) photographs. Each sight line shall be illustrated by one four-inch by six-inch color photograph of what can currently be seen from any public road within 300 feet.

3) Proposed (after condition). Each of the existing condition photographs shall have the proposed personal wireless service facility superimposed on it to show what will be seen from public roads if the proposed personal wireless service facility is built.

(j) Siting elevations, or views at-grade from the north, south, east and west for a 50-foot radius around the proposed personal wireless service facility plus from all existing public and private roads that serve the subject property. Elevations shall be at either one-quarter inch equals one foot or one-eighth inch equals one foot scale and show the following:

1) Antennas, mounts and equipment shelter(s), with total elevation dimensions and AGL of the highest point.

2) Security barrier. If the security barrier will block views of the personal wireless service facility, the barrier drawing shall be cut away to show the view behind the barrier.

3) Any and all structures on the subject property.

4) Existing trees and shrubs at current height and proposed trees and shrubs at proposed height at time of installation, with approximate elevations dimensioned.

5) Grade changes, or cuts and fills, to be shown as original grade and new grade line, with two-foot contours above mean sea level.

- (k) Equipment brochures for the proposed personal wireless service facility, such as manufacturer's specifications or trade journal reprints, shall be provided for the antennas, mounts, equipment shelters, cables as well as cable runs and security barrier, if any.
- (I) Materials of the proposed personal wireless service facility specified by generic type and specific treatment (e.g., anodized aluminum, stained wood, painted fiberglass, etc.). These shall be provided for the antennas, mounts, equipment shelters, cables as well as cable runs, and security barrier, if any.
- (m) Colors of the proposed personal wireless service facility represented by a color board showing actual colors proposed. Colors shall be provided for the antennas, mounts, equipment shelters, cables as well as cable runs, and security barrier, if any.
- (n) Dimensions of the personal wireless service facility specified for all three directions: height, width and breadth. These shall be provided for the antennas, mounts, equipment shelters and security barrier, if any.
- (0) Appearance shown by at least two photographic superimpositions of the personal wireless service facility within the subject property. The photographic superimpositions shall be provided for the antennas, mounts, equipment shelters, cables as well as cable runs, and security barrier, if any, for the total height, width and breadth.
- (p) Landscape plan including existing trees and shrubs and those proposed to be added, identified by size of specimen at installation and species.
- (q) If lighting of the site is proposed, the applicant shall submit a manufacturer's computer-generated point-to-point printout, indicating the horizontal footcandle levels at grade, within the property to be developed and twenty-five (25) feet beyond the property lines. The printout shall indicate the location and types of luminaires proposed.
- (r) The applicant shall list location, type and amount (including trace elements) of any materials proposed for use within the personal wireless service facility that are considered hazardous by the federal, state or local government.
- (s) Noise filing requirements.

The applicant shall provide a statement listing the existing and maximum future projected measurements of noise from the proposed personal wireless service facilities, measured in decibels Ldn (logarithmic scale, accounting for greater sensitivity at night), for the following: 1) Existing, or ambient: the measurements of existing noise. 2) Existing plus proposed personal wireless service facilities: maximum estimate of noise from the proposed personal wireless service facility plus the existing noise environment.

Such statement shall be certified and signed by an acoustical engineer, stating that noise measurements are accurate and meet the Noise Standards of this Bylaw.

(t) Radiofrequency Radiation (RFR) filing requirements.

The applicant shall provide a statement listing the existing and maximum future projected measurements of RFR from the proposed personal wireless service facility, for the following situations: 1) Existing, or ambient: the measurements of existing RFR. 2) Existing plus proposed personal wireless service facilities: maximum estimate of RFR from the proposed personal wireless service facility plus the existing RFR environment.

The applicant shall also provide a certification, signed by a RF engineer, stating that RFR measurements are accurate and meet FCC Guidelines as specified in the Radiofrequency Radiation Standards sub-section of this Bylaw.

(u) Federal environmental filing requirements.

The National Environmental Policy Act (NEPA) applies to all applications for personal wireless service facilities. NEPA is administered by the FCC via procedures adopted as Subpart 1, Section 1.1301 et seq. (47**CFR** Ch. I). The FCC requires that an environmental assessment (EA) be filed with the FCC prior to beginning operations for any personal wireless service facility proposed in, or involving any of, the following: a) wilderness areas, b) wildlife preserves, c) endangered species habitat, d) historical site, e) Native American religious site, f) flood plain, g) wetlands, h) high intensity white lights in residential neighborhoods or i) excessive radiofrequency radiation exposure.

At the time of application filing, an EA that meets FCC requirements shall be submitted to the Town for each personal wireless service facility site that requires such an EA to be submitted to the FCC.

(3) Baloon or crane test.

Within 30 days of the pre-application conference, or within 21 days of filing an application for a Special Permit, the applicant shall arrange for a balloon or crane test at the proposed site to illustrate the height of the proposed facility. The date, time and location of such test shall be advertised in a newspaper of general circulation in the Town at least 14 days, but not more than 21 days prior to the test.

(4) Waiver of filing requirements.

The Board may waive one or more of the application filing requirements of this section if it finds that such information is not needed for a thorough review of the proposed personal wireless service facility.

J. Co-location.

- (1) Licensed carriers shall share personal wireless service facilities and sites where feasible and appropriate, thereby reducing the number of personal wireless service facilities that are stand-alone facilities. All applicants for a special permit for a personal wireless service facility shall demonstrate a good faith effort to co-locate with other carriers. Such good faith effort includes:
 - (a) A survey of all existing structures that may be feasible sites for co-locating personal wireless service facilities;
 - (b) Contact with all the other licensed carriers for commercial mobile radio services operating in Mashpee and each of the adjoining towns; and
 - (c) Sharing information necessary to determine if co-location is feasible under the design configuration most accommodating to co-location.
- (2) In the event that co-location is found to be not feasible, a written statement of the reasons for the infeasibility shall be submitted to the Board. The Board may retain a technical expert in the field of RF engineering to verify if co-location at the site is not feasible or is feasible given the design configuration most accommodating to co-location. The cost for such a technical expert will be at the expense of the applicant. The Board may deny a special permit to an applicant that has not demonstrated a good faith effort to provide for co-location.
- (3) If the applicant does intend to co-locate or to permit co-location, the Board shall request drawings and studies that show the ultimate appearance and operation of the personal wireless service facility at full build-out.
- (4) If the Board approves co-location for a personal wireless service facility site, the special permit shall indicate how many facilities of what type shall be permitted on that site. Facilities specified in the special permit approval shall require no further zoning approval. However, the addition of any facilities not specified in the approved special permit shall require a new special permit. Estimates of RFR emissions will be required for all facilities, including proposed and future facilities.
- K. Modifications.

A modification of a personal wireless service facility will be considered equivalent to an application for a new personal wireless service facility and will require a special permit when the following events apply:

- (1) The applicant and/or co-applicant wants to alter the terms of the special permit by changing the personal wireless service facility in one or more of the following ways: a change in the number of facilities permitted on the site or a change in technology used for the personal wireless service facility.
- (2) The applicant and/or co-applicant wants to add any equipment or additional height not specified in the original design filing.
- L. Monitoring and maintenance.
- (1) After the personal wireless service facility is operational, the applicant shall submit, within 90 days of beginning operations, and at annual intervals from the date of issuance of the special permit, existing measurements of RFR from the personal wireless service facility. Such measurements shall be signed and certified by a RF engineer, stating that RFR measurements are accurate and meet FCC Guidelines as specified in Section H. of this bylaw.
- (2) After the personal wireless service facility is operational, the applicant shall submit, within 90 days of the issuance of the Special Permit, and at annual intervals from the date of issuance of the Special Permit, existing measurements of noise from the personal wireless service facility. Such measurements shall be signed by an acoustical engineer, stating that noise measurements are accurate and meet the Noise Standards sub-section of this Bylaw.
- (3) The applicant and co-applicant shall maintain the personal wireless service facility in good condition. Such maintenance shall include, but shall not be limited to, painting, structural integrity of the mount and security barrier and maintenance of the buffer areas and landscaping.
- M. Abandonment or discontinuation of use.
- (1) At such time that a licensed carrier plans to abandon or discontinue operation of a personal wireless service facility, such carrier will notify the Town by certified U.S. mail of the proposed date of abandonment or discontinuation of operations. Such notice shall be given no less than 30 days prior to abandonment or discontinuation of operations. In the event that a licensed carrier fails to give such notice, the personal wireless service facility shall be considered abandoned upon such discontinuation of operations.
- (2) Upon abandonment or discontinuation of use, the carrier shall physically remove the personal wireless service facility within 90 days from the date of abandonment or discontinuation of use. "Physically remove" shall include, but not be limited to:
 - (a) Removal of abandoned antennas, mount, equipment shelters and security barriers from the subject property.
 - (b) Proper disposal of the waste materials from the site in accordance with local and state solid waste disposal regulations.

- (c) Restoring the location of the personal wireless service facility to its natural or original condition, except that any landscaping and grading shall remain as-is.
- (3) If a carrier fails to remove a personal wireless service facility in accordance with this section of this Bylaw, the Town shall have the authority to enter the subject property and physically remove the facility. The Planning Board may require the applicant to post a bond at the time of construction in an appropriate amount to cover all costs for the removal of the personal wireless service facility in the event the Town must remove the facility.

N. Reconstruction or replacement of existing towers and monopoles.

Guyed towers, lattice towers, utility towers and monopoles in existence at the time of adoption of this bylaw may be reconstructed, altered, extended or replaced on the same site by special permit, provided that the Planning Board finds that such reconstruction, alteration, extension or replacement will not be substantially more detrimental to the neighborhood and/or the Town than the existing structure. In making such a determination, the Planning Board shall consider whether the proposed reconstruction, alteration, extension or replacement will create public benefits such as opportunities for co-location, improvements in public safety, and/or reduction in visual and environmental impacts. No reconstruction, alteration, extension or replacement shall exceed the height of the existing facility by more than twenty (20) feet.

O. Term of special permit.

A Special Permit issued for any personal wireless service facility over fifty (50) feet in height shall be valid for fifteen (15) years. At the end of that time period, the personal wireless service facility shall be removed by the carrier or a new special permit shall be required."

or take any other action relating thereto.

Submitted by Planning Board

Explanation: This article would establish regulations and a special permit process for "personal wireless service facilities" (wireless phone services, etc., usually involving towers), whose providers have recently been determined to be public service corporations (public utilities) by the Massachusetts Department of Telecommunications and Energy and which were the subject of specific land use control restraints enacted by the U.S. Congress as part of the Telecommunications Act passed in 1996. The Town may not prohibit their development under the Telecommunications Act but may adopt reasonable guidelines on their location and other characteristics. The article is based on a model bylaw prepared for the Cape Cod Commission in response to the provisions of the Telecommunications Act, along with recommendations and copies of bylaws from other Massachusetts towns provided by Town Counsel.

It would restrict the height of such facilities to approximately 45 feet except within a Wireless Facility Overlay District, within which towers of 100 to 200 feet would be allowed. That overlay district includes the land within the Commonwealth Electric high tension power line easement as well as all other parts of the town except lands within the National Wildlife Refuge boundaries, within 1000 feet of the mean high water line of a Great Pond or tidal water body, within a Historic District, within 1000 feet of a Historic District or of a place listed in the 1997 Massachusetts State register of Historic places, within the Otis A.N.G.B. Accident Prevention Zone or within 300 feet of the right of way of any designated scenic roadway. Co-location and location of such facilities on existing towers, water towers, steeples etc. is encouraged. Visual buffers, camouflage techniques and setbacks ("fall zone") are required and noise and lighting are restricted in order to minimize impacts on neighboring properties.

BENNETT ENVIRONMENTAL ASSOCIATES, INC.

LICENSED SITE PROFESSIONALS, ENVIRONMENTAL SCIENTISTS, GEOLOGISTS, ENGINEERS

1573 Main Street, P.O. Box 1743 Brewster, MA 02631 (508) 896-1706 fax (508)896-5109

LETTER OF TRANSMITTAL

Ms. Mary Waygan, Chiarman c/o Evan Lehrer, Town Planner TOWN OF MASHPEE - PLANNING BOARD 10/25/18 BEA08-2252 I OVAN OF MASHPEE - PLANNING BOARD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TO:				DATE:	JOB NUMBER:
16 Great Neck Road Windchime Condominiums Trust: Mashpee, MA 02649 Windchime Condominiums Trust: SHIPPING METHOD: Windchime Foint Development Group, LP (10/30/98) Regular Mail Pick Up Priority Mail Hand Deliver Certified Mail Other Certified Mail Green Card/RR Verified Mail Green Card/RR Verified Mail Green Card/RR 1 10/24/18 BEA Request for SP Modification (as referenced above) with Check #10387 in the amount of \$230.00 as filing fee 1 10/24/18 BEA Request for SP Modification cover letter, with Enclosures as noted [One hard-copy, one electronic copy via PDF on CD] For review and comment: For approval: As requested: For your use: REMARKS: Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department (*Please note, Enclosures totals 343 pages and full PDF file is too large to email, to request an electronic copy, contact BEA Administrative Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	c/o Evan Lehrer	r, Town Planner			10/25/18	BEA08-2252
windching Condominums Trust: SHPPING METHOD: Regular Mail Pick Up Priority Mail Hand Deliver Zepress Mail Other Certified Mail Green Card/RR Coppes DATE DATE DESCRIPTION 1 Application for Special Permit Modification (as referenced above) with Check #10387 in the amount of \$230.00 as filing fee 1 10/24/18 BEA Request for SP Modification cover letter, with Enclosures as noted [One hard-copy, one electronic copy via PDF on CD] For review and comment: For approval: As requested: For your use: REMARKS: Ed Godwin, Property Manager – American Properties team, Inc. Gilen Harrington, Director – Mashpee Health Department Cifen Harrington, Director – Mashpee Health Department Gilen Harrington, Director – Mashpee Health Department	16 Great Neck I	Road	IING BOARD		REGARDING:	
SHIPPING METHOD: Saddastike Mashpee, Inc. (5/21/87) and Windchime Point Development Group, LP (10/30/98) Regular Mail Pick Up Mindchime Point Development Group, LP (10/30/98) Priority Mail Hand Deliver Saddastike Mashpee, Inc. (5/21/87) and Windchime Point Development Group, LP (10/30/98) Copies DATE Green Card/RR Saddastike Mashpee, MA [Parcel ID 75-11-0] Copies DATE DESCRIPTION Saddastike Mashpee, MA [Parcel ID 75-11-0] 1 Application for Special Permit Modification (as referenced above) with Check #10387 in the amount of \$230.00 as filing fee 1 10/24/18 BEA Request for SP Modification cover letter, with Enclosures as noted [One hard-copy, one electronic copy via PDF on CD] For review and comment: For approval: As requested: For your use: REMARKS: CC (Application and Cover Letter only*): Windchime Condominium Trust c/o Joseph Mooney, Chairman – Board of Directors John Schaffer, Esquire - Marcus, Brrico, Emmer & Brooks, P.C. Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department [*Please note, Enclosures totals 343 pages and full PDF file is too large to email, to request an electronic copy, contact BEA Administrative Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	Mashpee, MA ()2649				
And Cop Image: Cop Intermediate Cop Mashpee, MA Priority Mail Hand Deliver Mashpee, MA Express Mail Other Image: Cop Intermediate Cop Certified Mail Green Card/RR Image: Cop Intermediate Cop 1 Application for Special Permit Modification (as referenced above) with Check #10387 in the amount of \$230.00 as filing fee 1 10/24/18 BEA Request for SP Modification cover letter, with Enclosures as noted [One hard-copy, one electronic copy via PDF on CD] For review and comment: For approval: As requested: For your use: REMARKS: CC (Application and Cover Letter only*): Windohime Condominium Trust c/o Joseph Mooney, Chairman – Board of Directors John Schaffer, Esquire - Marcus, Errico, Emmer & Brooks, P.C. Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department (*Please note, Enclosures totals 343 pages and full PDF file is too large to email; to request an electronic copy, contact BEA Administrative Assistant, at L&weeli@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	SHIPPING ME	ETHOD:]	Sandcastle Mashpee, Inc. (5	(21/87) and
Priority Mail Hand Deliver Image: Complexity of the complex	Regular Mail		Pick Up			
Certified Mail Green Card/RR COPIES DATE DESCRIPTION 1 Application for Special Permit Modification (as referenced above) with Check #10387 in the amount of \$230.00 as filing fee 1 10/24/18 BERA Request for SP Modification cover letter, with Enclosures as noted [One hard-copy, one electronic copy via PDF on CD] For review and comment: For approval: As requested: For your use: REMARKS: CC (Application and Cover Letter only*): Windchime Condominium Trust c/o Joseph Mooney, Chairman – Board of Directors John Schaffer, Esquire - Marcus, Errico, Emme & Brocks, P.C. Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department [*Please note, Enclosures totals 343 pages and full PDF file is too large to email; to request an electronic copy, contact BEA Administrative Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	Priority Mail		Hand Deliver	X		
COPIES DATE DESCRIPTION 1 Application for Special Permit Modification (as referenced above) with Check #10387 in the amount of \$230.00 as filing fee 1 10/24/18 BEA Request for SP Modification cover letter, with Enclosures as noted [One hard-copy, one electronic copy via PDF on CD] For review and comment: For approval: As requested: For your use: REMARKS: CC (Application and Cover Letter only*): Windchime Condominium Trust c/o Joseph Mooney, Chairman – Board of Directors John Schaffer, Esquire - Marcus, Errico, Emmer & Brooks, P.C. Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department [*Please note, Enclosures totals 343 pages and full PDF file is too large to email; to request an electronic copy, contact BEA Administrative Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	Express Mail		Other			
1 Application for Special Permit Modification (as referenced above) with Check #10387 in the amount of \$230.00 as filing fee 1 10/24/18 BEA Request for SP Modification cover letter, with Enclosures as noted [One hard-copy, one electronic copy via PDF on CD] For review and comment: For approval: As requested: For your use: REMARKS: CC (Application and Cover Letter only*): Windchime Condominium Trust c/o Joseph Mooney, Chairman – Board of Directors John Schaffer, Esquire - Marcus, Errico, Emmer & Brooks, P.C. Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department [*Please note, Enclosures totals 343 pages and full PDF file is too large to email; to request an electronic copy, contact BEA Administrative Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	Certified Mail		Green Card/RR			
1 10/24/18 \$230.00 as filing fee BEA Request for SP Modification cover letter, with Enclosures as noted [One hard-copy, one electronic copy via PDF on CD] For review and comment: For approval: As requested: For your use: REMARKS: CC (Application and Cover Letter only*): Windchime Condominium Trust c/o Joseph Mooney, Chairman – Board of Directors John Schaffer, Esquire - Marcus, Errico, Emmer & Brooks, P.C. Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department [*Please note, Enclosures totals 343 pages and full PDF file is too large to email; to request an electronic copy, contact BEA Administrative Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	COPIES	DATE	DESCRIP	TION		
CC (Application and Cover Letter only*): Windchime Condominium Trust c/o Joseph Mooney, Chairman – Board of Directors John Schaffer, Esquire - Marcus, Errico, Emmer & Brooks, P.C. Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department [*Please note, Enclosures totals 343 pages and full PDF file is too large to email; to request an electronic copy, contact BEA Administrative Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	1		\$230.00 as filing fe BEA Request for SI [One hard-copy, on	e P Modif e electro	ication cover letter, with Enclo onic copy via PDF on CD]	osures as noted
John Schaffer, Esquire - Marcus, Errico, Emmer & Brooks, P.C. Ed Goodwin, Property Manager – American Properties team, Inc. Glen Harrington, Director – Mashpee Health Department [*Please note, Enclosures totals 343 pages and full PDF file is too large to email; to request an electronic copy, contact BEA Administrative Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	REMARKS:					
Assistant, at LRowell@bennett-ea.com, for a link to download complete application package via third-party file-sharing service]	CC (Application	n and Cover Letter	John Schaffe Ed Goodwin	er, Esqui , Proper	ire - Marcus, Errico, Emmer & ty Manager – American Prope	Brooks, P.C. rties team, Inc.
EVENUE : Double : However I DC: $CCUUD$ DC (UUUTC) (C) / T $=$ 10 $(1 \times 10^{-1} \times 10^{-1})$ · · · · · · · · · · · · · · · · · · ·	Assistant, at LR	owell@bennett-ea	.com, for a link to do	wnload	complete application package	via third-party file-sharing service]

Town of Mashpee

Planning Board

16 Great Neck Road North Mashpee, Massachuseus 02649

APPLICATION FOR SPECIAL PERMIT MODIFICATION

Date received by Town Clerk:_____ Town Clerk Signature / Seal: _____ The undersigned hereby applies for a Modification of the Special Permit approved by the Mashpee Planning Board on April 22, 1987 for a project entitled Sandcastle Mashpee, Inc. The original Special Permit and any Modifications have been recorded in the Barnstable County Registry of Deeds at the following Book(s) and Page(s): 5734/225-244, 5910/190-191, 6405/268-269, 6047/003-004 Name of Applicant Bennett Environmental Associates, Inc. Phone 508-896-1706 Address P.O. Box 1743, 1573 Main Street - Brewster, MA 02631 David Bennett, President Owner, if different Joseph Mooney, Chairman - Board of Directors Phone 610-283-1983 Address Windchime Condominium Trust - 90 Great Neck Road South - Mashpee, MA Attach copies of (a) most recent recorded deed and (b) tax bill or Assessors' certification. Deed of property recorded in Barnstable County Registry Book <u>26347</u> Page <u>153-269B</u> or Land Court Certificate of Title No. Location and description of property: Windchime Condominiums: 90 Great Neck Road South Multi-Unit Condominium: 156 Units on 38.6 acres of land in cluster configuration with surrounding open space Mashpee Assessors Map(s) and Block(s): Map 75, Parcel 11 Zoning District(s) in which property is located: R3 How long have you owned the property? 30 years Section(s) of the Zoning Bylaw which require(s) the permit you seek: Section 9.383(d) Present use of property: Residential Description of proposed modification (attach plans and documents as required by the Zoning By-law and Special Permit Regulations): 1) Seek release of funds held by as reserved under the Special Permit for wastewater treatment improvements under BRP WP 68 Permit (Section IX, Page 5: Book 5734, page 242). [Rationale: Redundant to Financial Assurance Mechanism required under the Groundwater Discharge Permit. Offset cost to private homeowers for aging treatment plant upgrade as to benefit of public health, safety and the environment). 2) Seek reduction in Wastewater Treatment Monitoring Program as consistent with the GWDP Permit 263-3M1 Requirements (Exhibit B, pages 1-5, Book 5734, pages 238-243). [Rationale: Program is unique to property with larger sources/loads with co-mingled plumes. Focused study is poorly designed and has limited value to intended regional evaluation, wherein Windchime source is a minor contributor]. Signature of Owner or Authorized Representative _ Attach written authorization signed by owner.

BENNETT ENVIRONMENTAL ASSOCIATES, INC.

LICENSED SITE PROFESSIONALS & ENVIRONMENTAL SCIENTISTS & GEOLOGISTS & ENGINEERS

1573 Main Street - P.O. Box 1743, Brewster, MA 02631 🖉 508-896-1706 🖉 Fax 508-896-5109 🖉 www.bennett-ea.com

BEA08-2252

October 24, 2018

Ms. Mary Waygan, Chairman C/o Evan Lehrer, Town Planner TOWN OF MASHPEE – PLANNING BOARD 16 Great Neck Road Mashpee, MA 02649

RE: Windchime Condominiums Trust Request for Special Permit Modification Sandcastle Mashpee, Inc. (5/21/87) and Windchime Point Development Group, LP (10/30/98) 90 Great Neck Road South [Parcel ID 75-11-0] Mashpee, MA.

Dear Chairman Waygan and Honorable Planning Board Members,

The Windchime Board of Directors and Homeowners Association (herein referred to as "Windchime") would like to thank you for the opportunity to speak to you about wastewater treatment and planned improvements at the facility, in the context of the Special Permit and Modification process. After consultation with the Planning Board in meetings attended, and with the assistance of the Town Planner Evan Lehrer, Windchime has been advised to make application for a Modification of the Special Permit under the provisions of the Town of Mashpee Special Permit Regulations (11/15/2017). As such, Bennett Environmental Associates, Inc. (BEA) on behalf of the Windchime Condominium Trust, hereby requests a public hearing with the Mashpee Planning Board and makes application for Special Permit Modification.

Such application is made for consideration of: 1) the release of the escrow funds held under the Special Permit to make improvements to the on-site wastewater treatment system through the BRP WP 68 "Treatment Works Plan Approval" permitting process; and 2) to seek a reduction in the Wastewater Treatment Monitoring Plan as commensurate to the environmental monitoring requirements specified under the Groundwater Discharge Permit 263-3M1. It is BEA's position that granting such Modifications reduces redundancy of overlapping jurisdictions, does not compromise the underlying environmental interests, and enhances protection of the groundwater and Mashpee River surface water resources through reduction of nutrients and other pollutants by some 85%, as compared to conventional septic systems, the primary source of controllable nitrogen entering the groundwater and eventually discharged to surface waters.

Based on the nature of the Special Permit Modification being sought, and the existence of plans, deeds, reports and other records already part of the Town of Mashpee public record, the applicant seeks waivers for all provisions under Section IV "Form and Content of Applications"

EMERGENCY SPILL RESPONSE () WASTE SITE CLEANUP () SITE ASSESSMENT () PERMITTING () SEPTIC DESIGN & INSPECTION WATER SUPPLY DEVELOPMENT, OPERATION & MAINTENANCE () WASTEWATER TREATMENT, OPERATION & MAINTENANCE OCTOBER 24, 2018 PAGE 2 OF 2

with the exception of Sections B1, B5, B13, B14 and B19, wherein these documents are attached with the minimum application fee of \$200, and \$30 for advertising, towards a public hearing on November 21, 2018.

Subject to your review and consideration of the application, please contact me directly with any questions or need for additional information in advance of the public hearing to best be prepared to discuss any topic the Mashpee Planning Board anticipates in the consideration of such Special Permit Modification.

Sincerely,

BENNETT ENVIRONMENTAL ASSOCIATES, INC. David C. Bennett, LPG., CGWP., RS (WWTO 5C) President

- Cc. Windchime Condominium Trust c/o Joseph Mooney, Chairman Board of Directors John Schaffer, Esquire - Marcus, Errico, Emmer & Brooks, P.C.
 Ed Goodwin, Property Manager – American Properties team, Inc.
 Glen Harrington, Director – Mashpee Health Department
- Encl. Town of Mashpee Planning Board Permit Application for Special Permit Modification Check# \$ 230.00
 Copy of Most Recent Recorded Deed/Recorded Special Permit and Modifications/Tax Bill Site Locus Plan: MassGIS Priority Resource Overlay
 Plan Set entitled "Windchime Point, Mashpee, MA" Prepared by Eldredge Surveying and Engineering – Chatham, MA., Dated June 1996 [Reduced to 11" x 17"].
 Report entitled "Water Quality Monitoring Program Annual Report – Windchime Point Condominiums...", Prepared by Bennett Environmental Associates, Inc. – Brewster, MA, Dated May 11, 2018.

Windchime Condominiums Financial Assurance Mechanism Windchime Condominiums Groundwater Discharge Permit

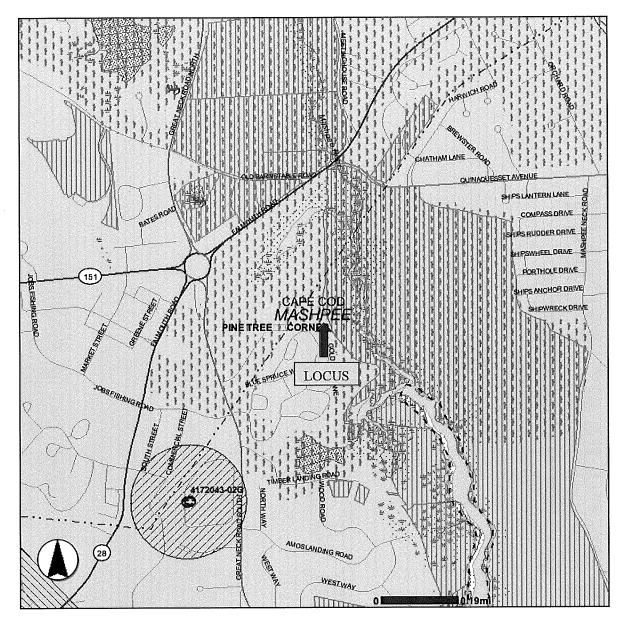
	Cap	BENNET Date 10/2	ES
USE WITH 91683 ENVELOPE Deluxe Corporation 1-800-326-0304 or www.deluxe.com/shop	Cape Cod Five Check Parcel: 75-11-0 Req. to Modify 5/21/87 Special	BENNETT ENVIRONMENTAL ASSOCIATES, INC. Town of Mashpee' Date Type Reference 10/25/2018 Bill App. for SP Mod. 230.00 Check Amount	ENCLOSU
DD050F STKDK04 02/01/2018 11:00 -366-	230.00	10387 Payment 230.00	· · · · · · · · · · · · · · · · · · ·

· . .

TOWN OF MASHPEE Office of the Tax Collector 16 Great Neck Road North Mashpee, MA 02649

Fiscal Year 2019 Preliminary Real Estate Tax Bill

[|նեսկոլյել||կեսլուլինել||ելելելել||եննել||եննել

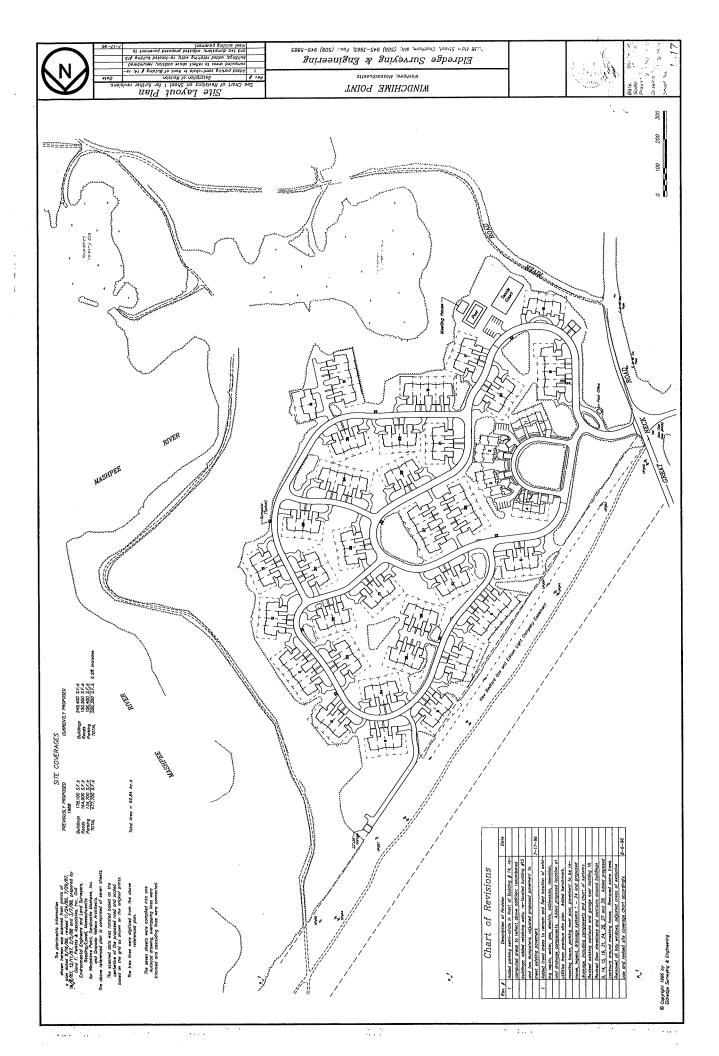

4702 ******AUTO**5-DIGIT 02632 MOONEY, JOSEPH J JR & MARION G 60 Gold Leaf Ln Mashpee MA 02649-3657

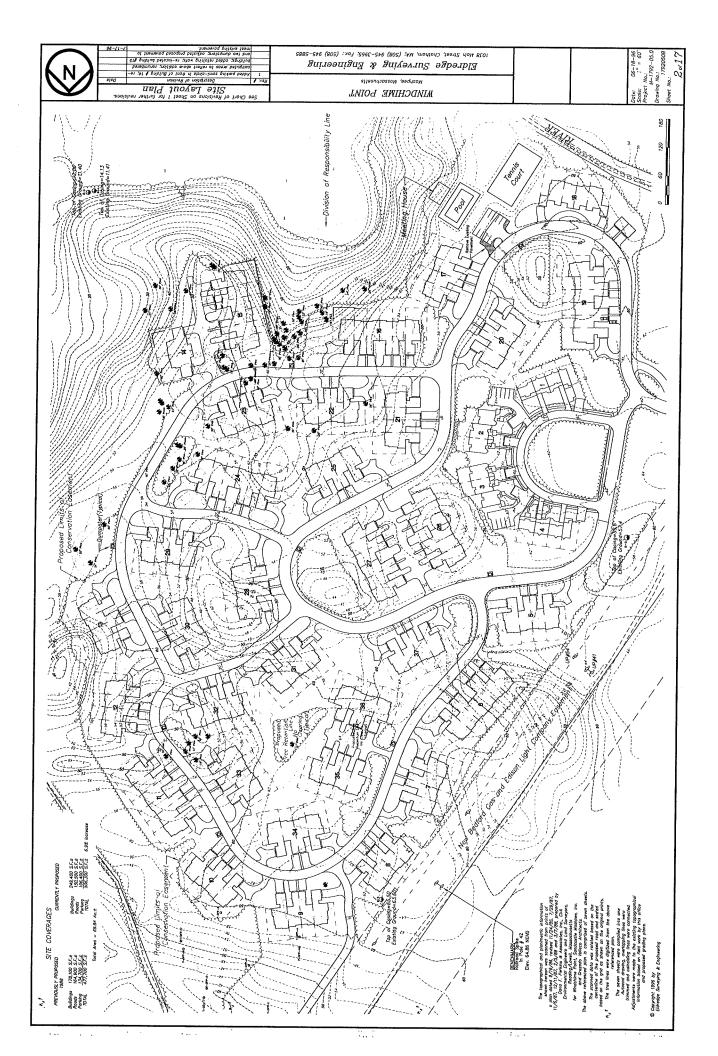
1st Quarte Return This Portion	OR'S COPY Pr Payment With Your Payment	A
Bill Date 7/1/2018	Bill No. 7900	U
PROPERTY DESCRIPTION	60 GOLD LEAF LN	G
Parcel ID	075-0011-0090	Ũ
AMOUNT DUE 8/1/2018	\$877.22	Š
Payments made after (reflected c	06/07/2018 may not be on this bill.	T
Make Check Pay	this and Nail Toy	R E M
TOWN OF MA	SHPEE COLLECTOR LOCKBOX	Î T

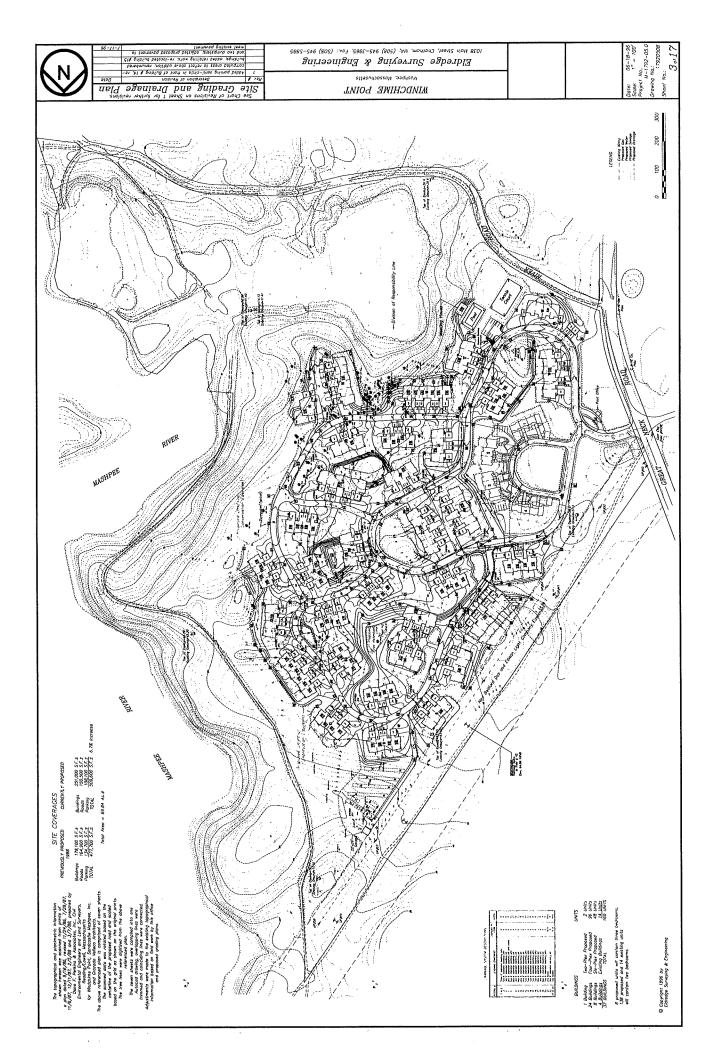
31942082019800007900400000877225

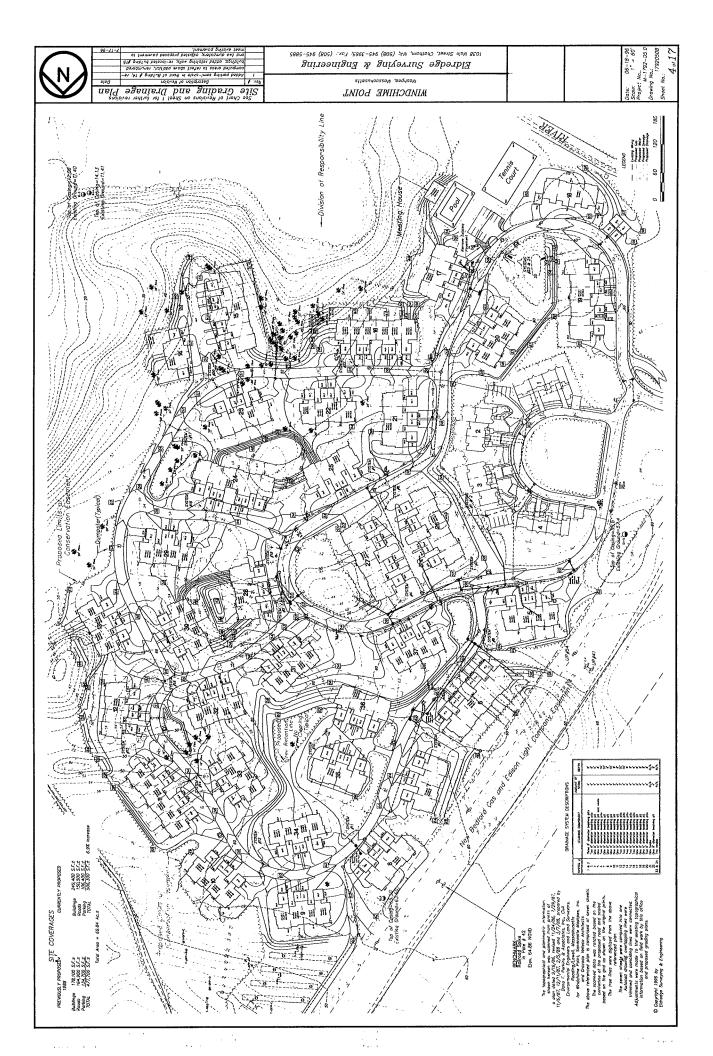
.

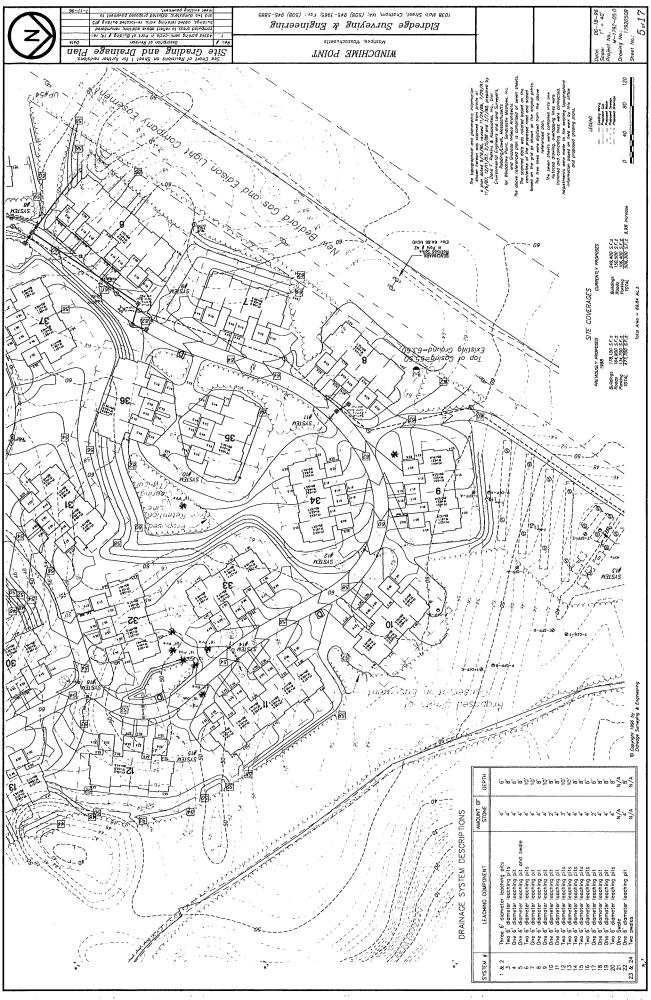
JOSEPH J MOONEY MARION MOONEY 60 GOLD LEAF LN	2545 307478/3140
PAY TO THE JUNE AND A THE	08-01-18 Denie
Light hundred seven	Holl \$ 877-97
USAA FEDERAL SAVINGS DANK NOTED MADERMOTT FWY SAN ANTONIO, TEXAS 74228-0544 (2014) 468-6001-400-8235724	Ro Ort
For 1st quarter - 60 Calffert have	254.5

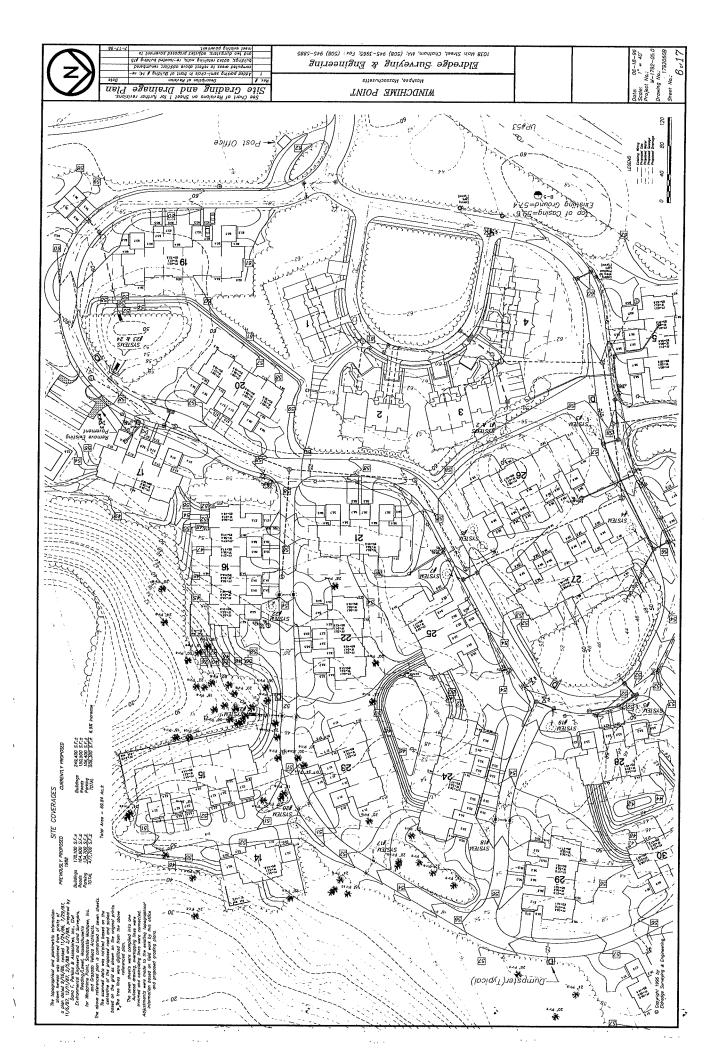

SITE LOCUS PLAN: A review of the MA DEP BWSC GIS Priority Resource Overlay mapping program shows the site as mapped within the recharge area of the Mashpee River some 300-600' (+/-) east of the Windchime Condominium Trust and Field's Point wastewater treatment facilities. The majority of the Windchime property is further mapped by NHESP as "Estimated Habitat of Rare Wetlands Wildlife", inclusive of the areas of the two WWTFs. The site is not within any defined Interim or Zone II Wellhead Protection Area for a public water supply (PWS). One non-community public water supply well is located within one-half of a mile southwest and an additional community public water supply is located within one mile to the north-northeast in apparent cross-gradient positions to the site. As such, based on the hydrogeologic position of the public water supplies and proximity of groundwater, no impact to any existing water supply is expected and no human receptors are considered aside from the recreational value of the Mashpee River.

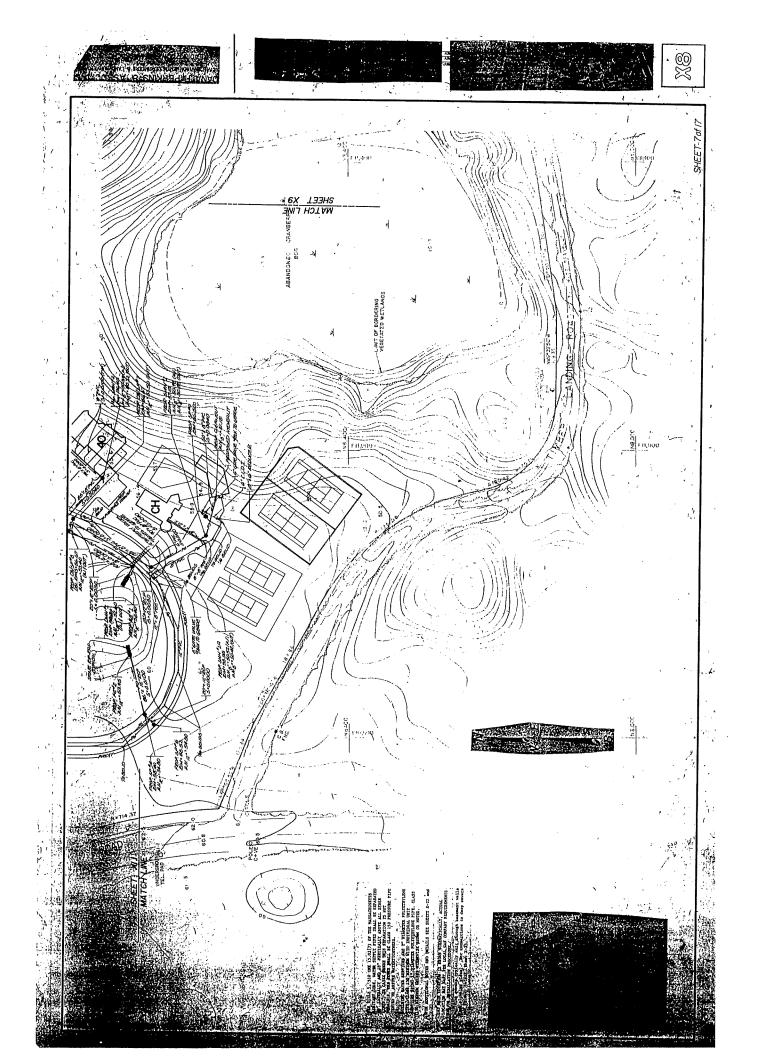

WINDCHIME <u>...</u>: : ... SITE LOCUS Patrick M. Butler, Esq.; Nutter, McClennan & Fish Peter F. Dimeo, R.A.; Peter F. Dimeo Associates, Inc. Allen W. Abrahamson, R.L.A.; Abrahamson & Associates, Inc. Todd Chaplin, P.E.; Mount Hope Engineering Terry W. Eldredge, L S.; Eldredge Surveying & Engineerng Stuart Bornstein, The Bornstein Companies ENGINEERING WINDCHIME PO MASHPEE, MASSACHUSETTS (For layout of sewage lines only.) 02633 June, 1996 ELDREDGE SURVEYING & 1038 MAIN STREET CHATHAM, MASSACHUSETTS (508) 945-3885 (508) 945-5885 (FAX) DEFINATION CONCENT AGUILTY SITE PLAN WASTEWATER TREATMENT FACILITY SITE PLAN WASTEWATER TREATMENT FACILITY INDRAULIC PROFILE WASTEWATER TREATMENT FACILITY HYDRAULIC PROFILE WASTEWATER TREATMENT FACILITY HYDRAULIC PROFILE WASTEWATER TREATMENT FACILITY ANPHIDROME REACTOR DETAILS WASTEWATER TREATMENT FACILITY ENDRER DETAILS WASTEWATER TREATMENT FACILITY PROPOSED CLEARWELLS AND DENITE FILTER WASTEWATER TREATMENT FACILITY PROPOSED CLEARWELLS AND DENITE FILTER WASTEWATER TREATMENT FACILITY PROPOSED CLEARWELLS AND DENITE FILTER STEWATER TREATMENT FACILITY DEROPOSED CLEARWELLS AND DENITE FILTER STEWATER TREATMENT FACILITY DEROPOSED CLEARWELLS AND DENITE FILTER STEWATER TREATMENT FACILITY DEROPOSED CLEARWELLS AND DENITE FILTER FOUR-PLEX SECOND FLOOR, FRONT AND RIGHT SIDE ELEVATIONS 1/8 SCALE SIX-PLEX SECOND FLOOR AND REAR AND 1/8 SCALE SIX-PLEX SECOND FLOOR AND REAR AND 1/8 SCALE SIX-PLEX SECOND FLOOR AND REAR AND 1/8 SCALE FOUR-PLEX FROM FLOOR AND REAR AND 1/8 SCALE FOUR-PLEX SECOND FLOOR AND REAR AND 1/8 SCALE FOUR-PLEX SECOND FLOOR AND REAR ELEVATION 1/8 SCALE FOUR-PLEX SECOND FLOOR AND REAR AND 1/8 SCALE FOUR-PLEX SECOND FLOOR AND REAR AND 1/8 SCALE FOUR-PLEX SECOND FLOOR AND REAR ELEVATION 1/8 SCALE FOUR-PLEX SECOND FLOOR AND REAR ELEVATION 1/8 SCALE FOUR-PLEX SECOND FLOOR AND REAR ELEVATION 1/8 SCALE FOUR-PLEX AND SIX-PLEX FRONT ELEVATIONS 1/4 SCALE FOUR-PLEX AND SIX-PLEX FRONT ELEVATIONS WITH STEPPED FOUNDATIONS 1/8 SCALE PREVIOUSLY APPROVED INFORMATION SCREENED STEE LAYOUT FLAN UO SCALE WITH PREVIOUSLY APPROVED INFORMATION SCREEN STEE LAYOUT FLAN UO SCALE WITH PREVIOUSLY APPROVED INFORMATION SCREEN STEE CRADING AND DRAINAGE PLAN 100 SCALE STEE GRADING AND DRAINAGE PLAN 00 SCALE STEE GRADING AND DRAINAGE PLAN 40 SCALE NORTHERLY PORTION STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X8 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X10 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X10 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X10 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X11 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X11 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X11 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X13 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X13 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X13 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X13 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X13 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X13 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X13 40 SCALE STEE UTILITIES PLAN by Dana F. Perkins, & Assoc., inc. SHEET X13 40 SCALE TYPICAL LANDSCAPE PLAN by Abrahamson & Associates, inc. NOTES AND SPECIFICATIONS (Copied from a plan by Dana F. Perkins & Assoc., inc.) DETALLS. (Sheet X23 of a plan by Dana F. Perkins & Assoc., inc.) Inc.) Landscape Design Sanitary Engineering Site Planning and Surveying Legal Counsel ' Architectural Design Applicant 100 SCALE 60 SCALE PLAN DRAWING TITLE LAYOU DRAWING INDEX DRAWING 0400200 20 4112 è. e. 2 an terra ۰., 4100

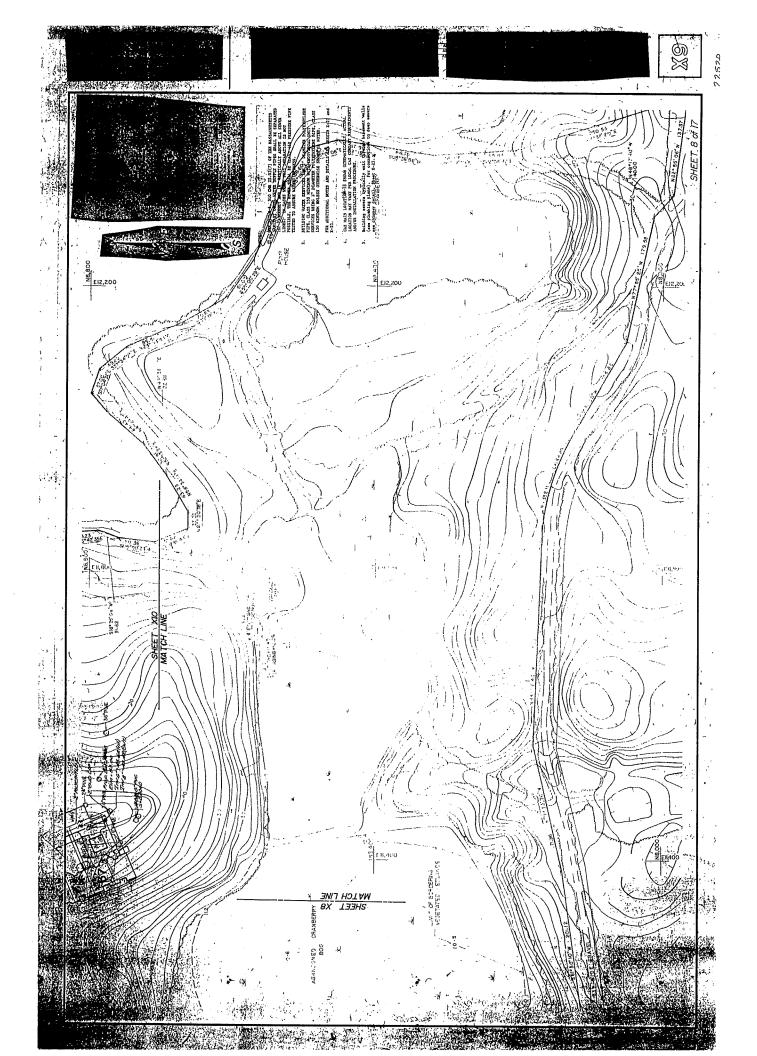

j

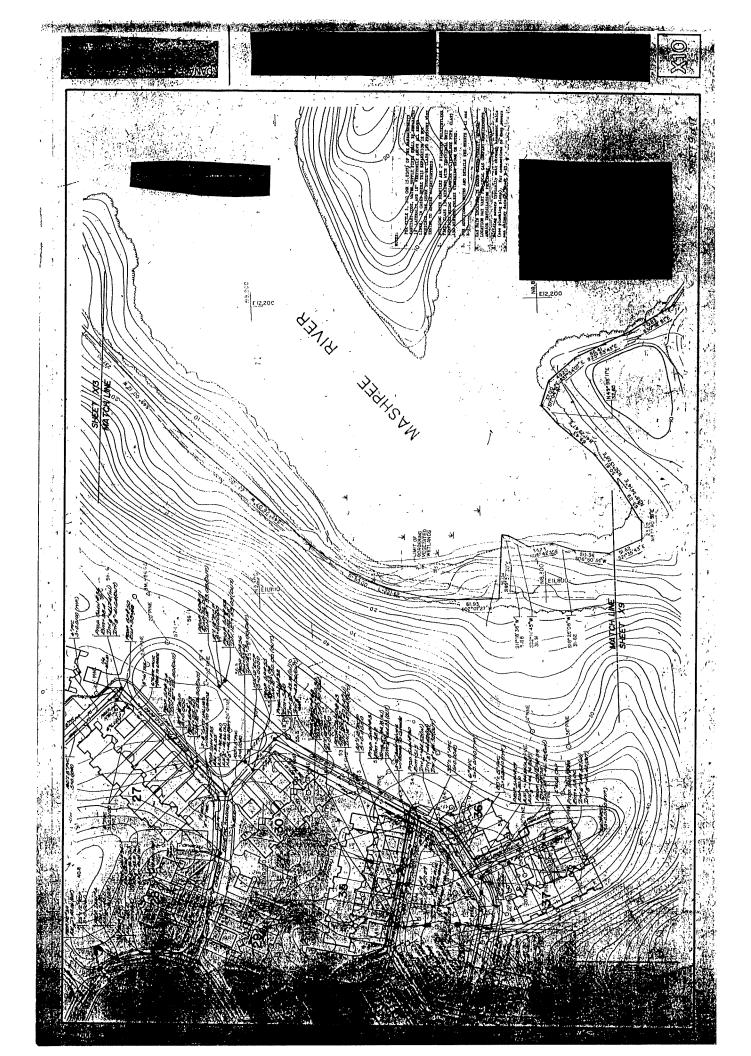

۱

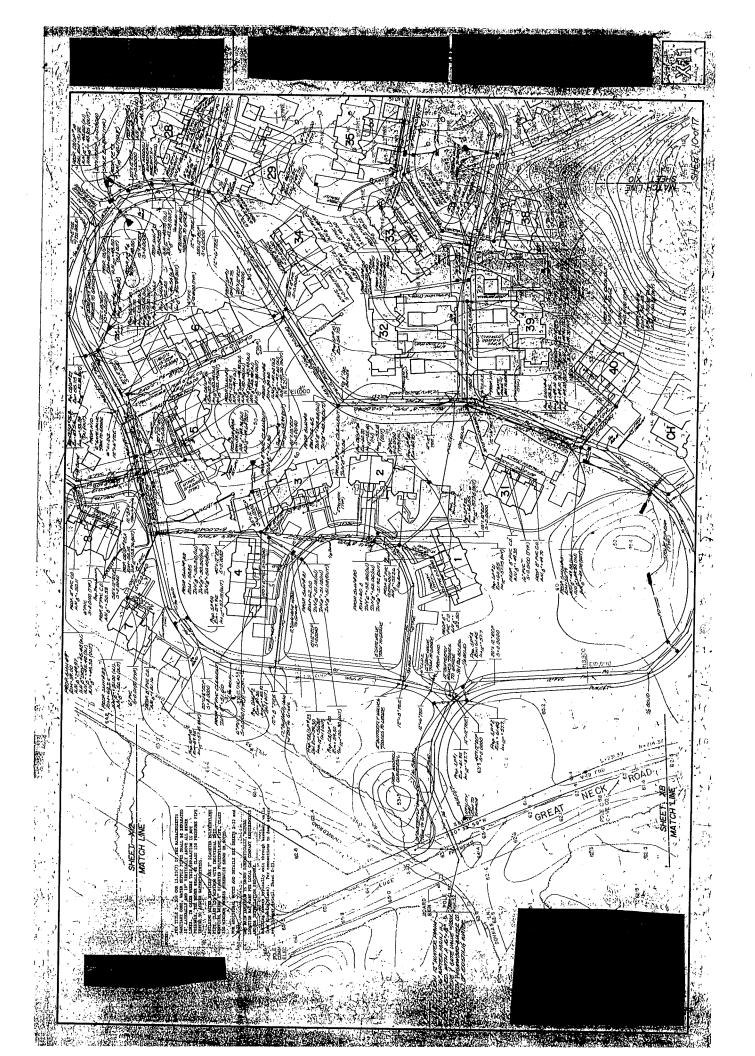

ł

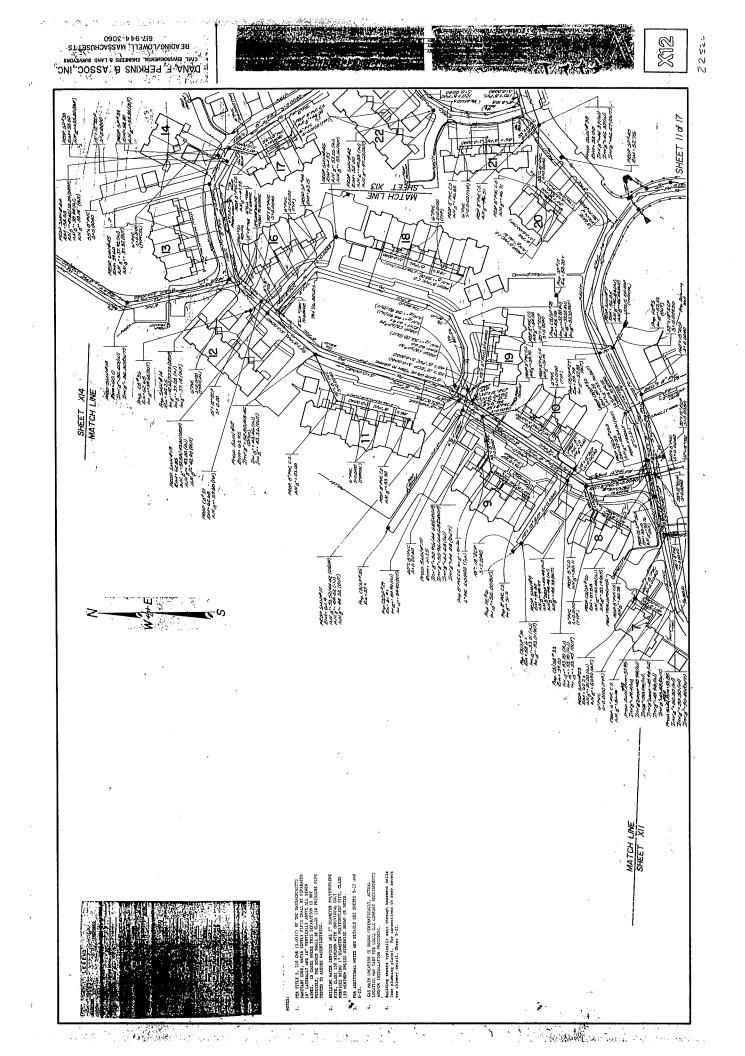


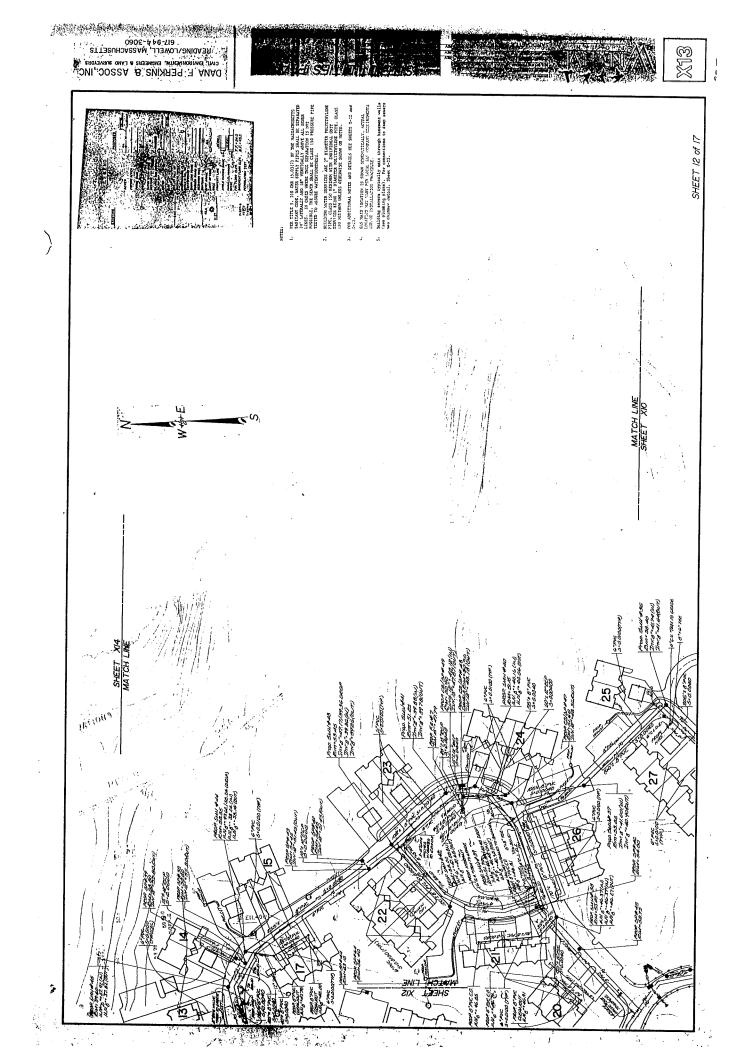


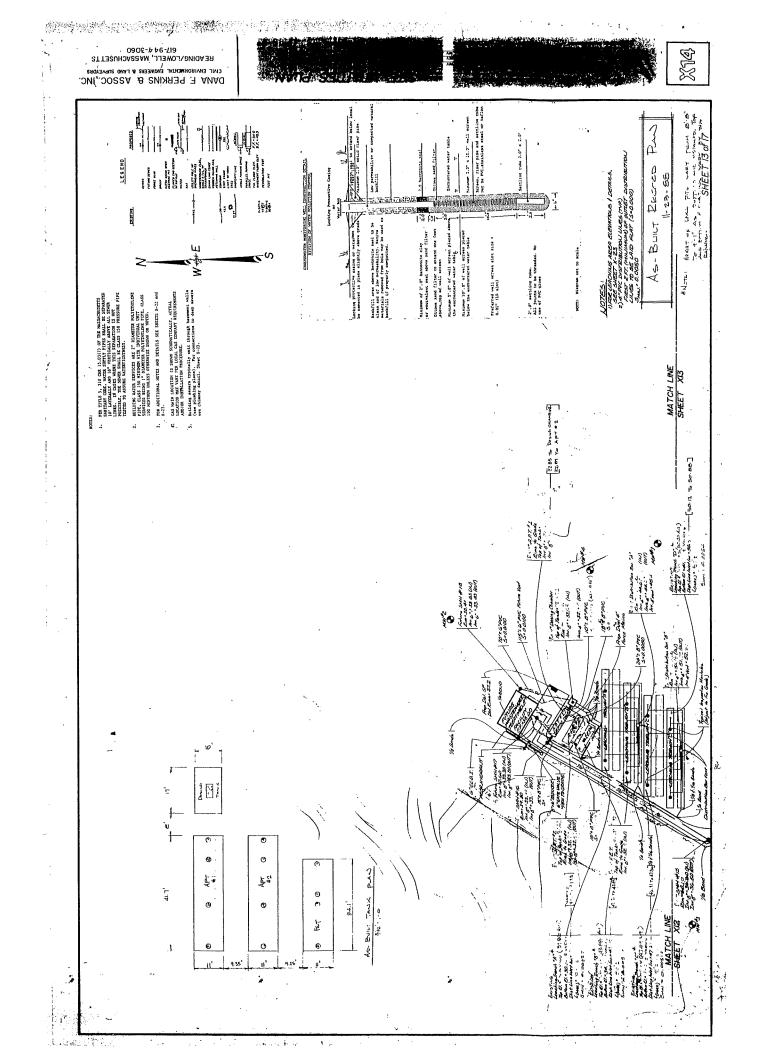


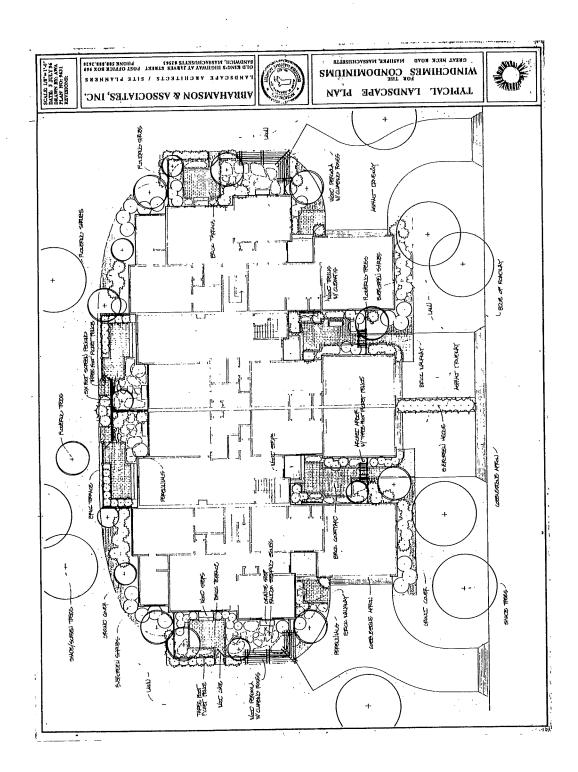


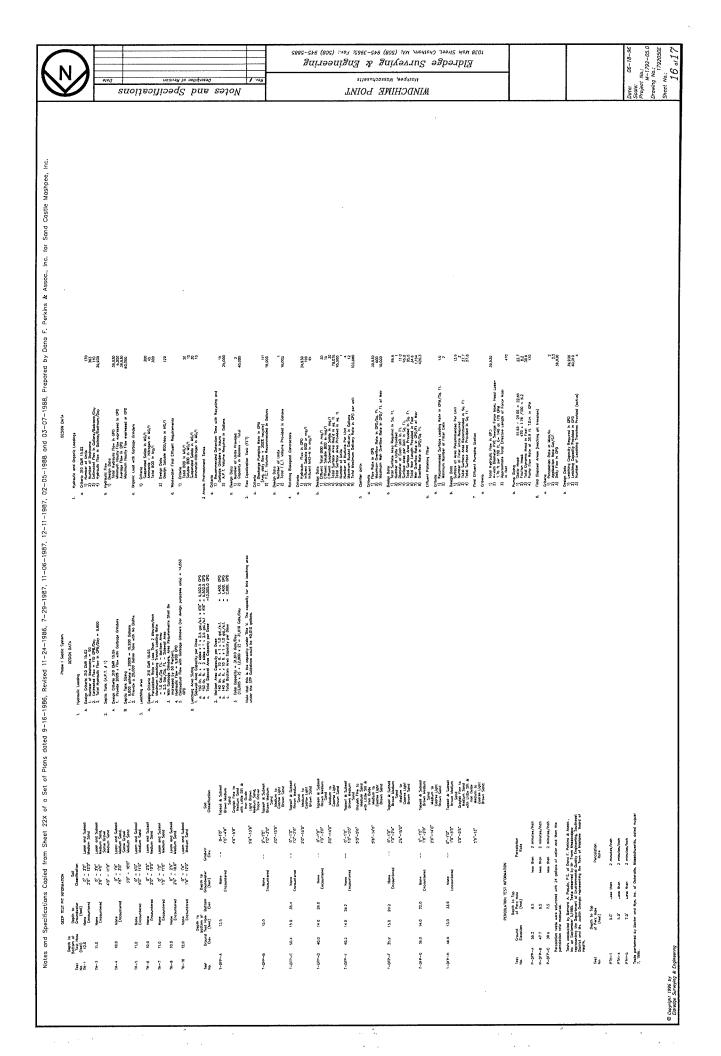


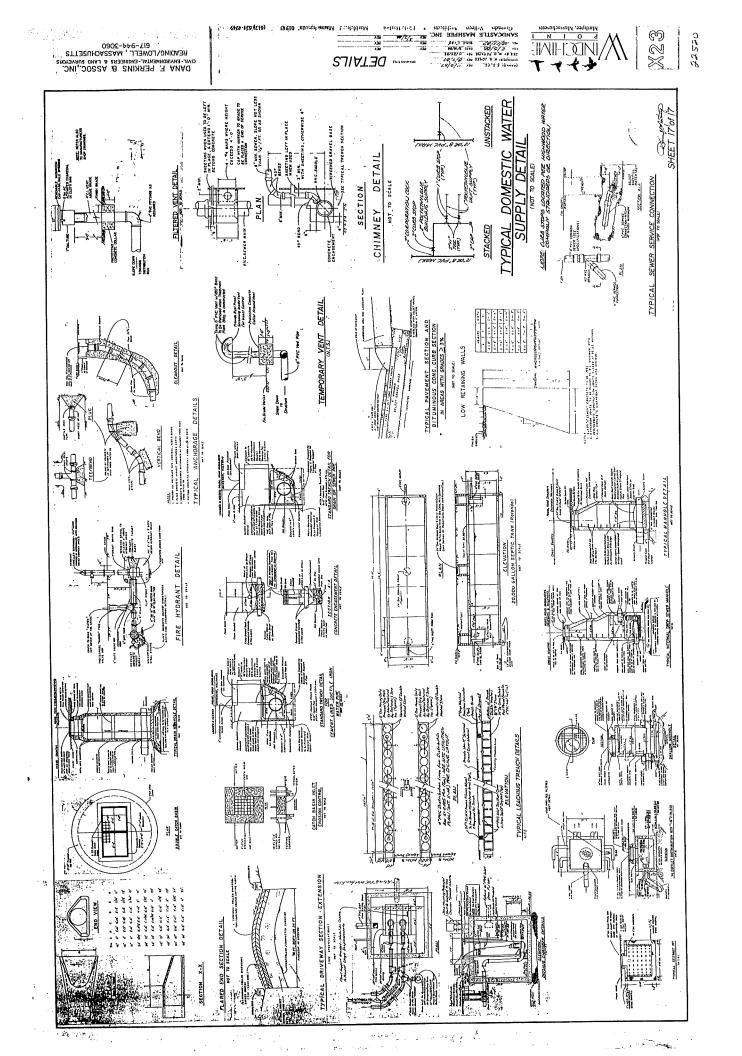


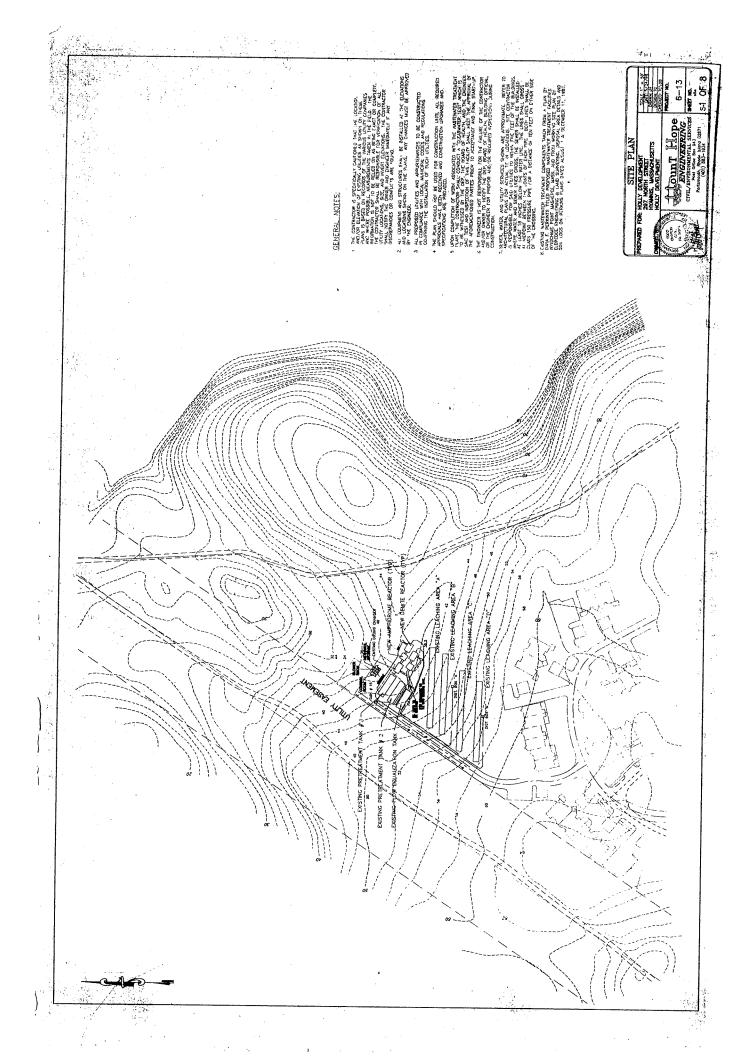


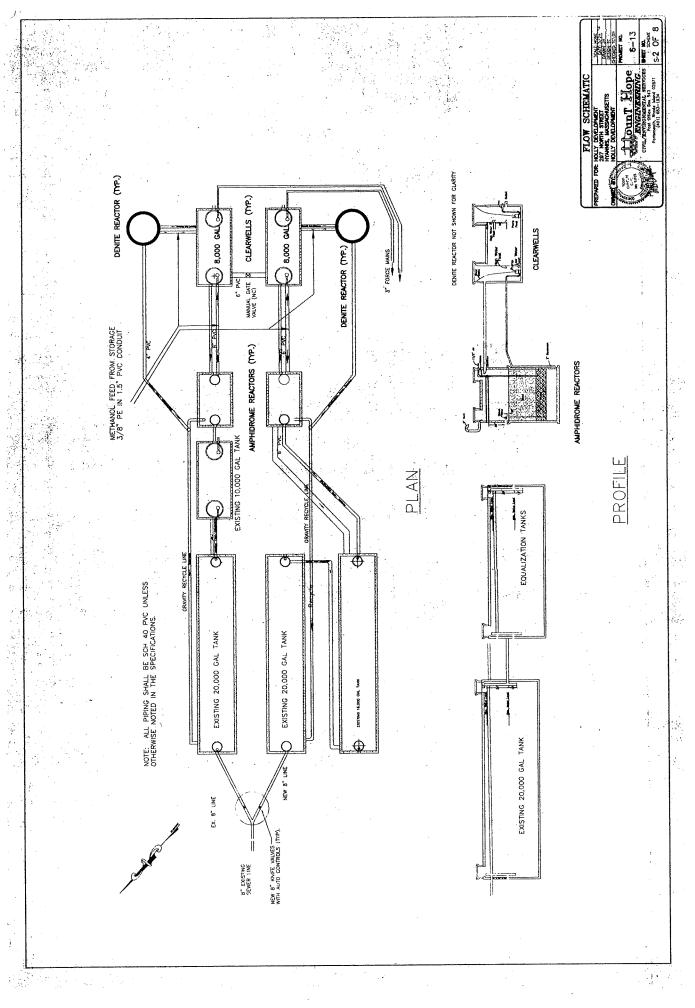




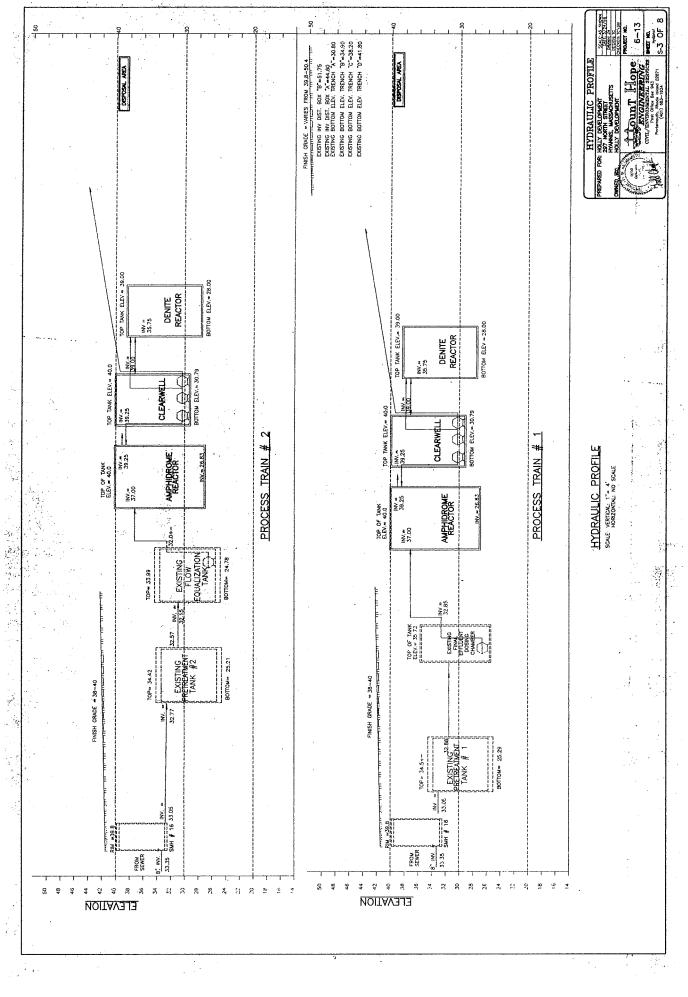


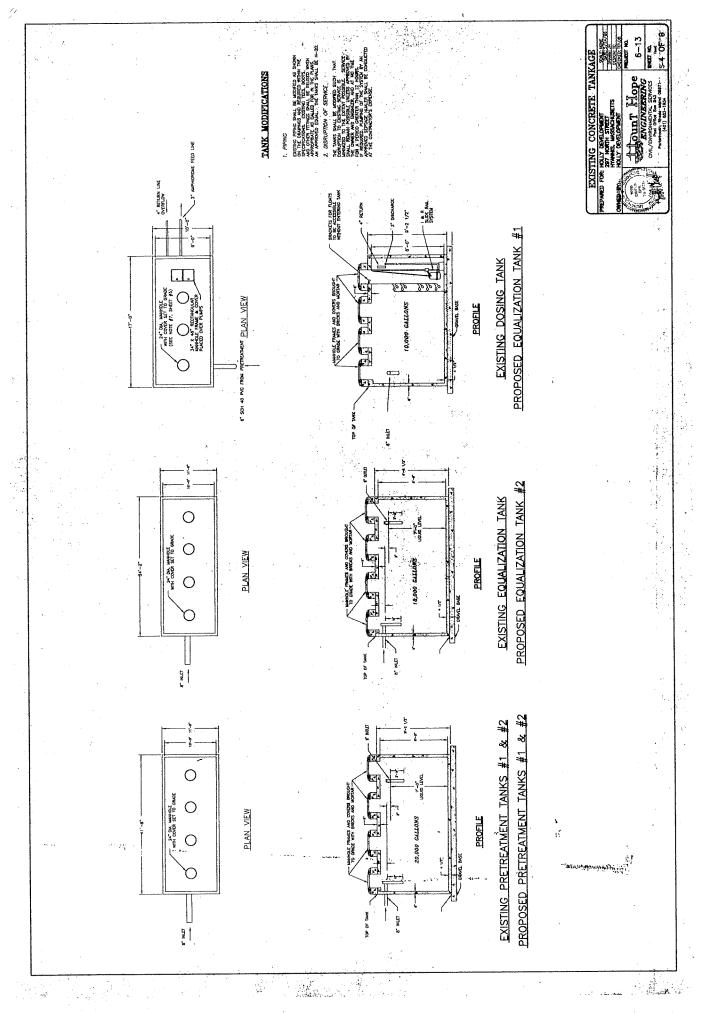



'n,

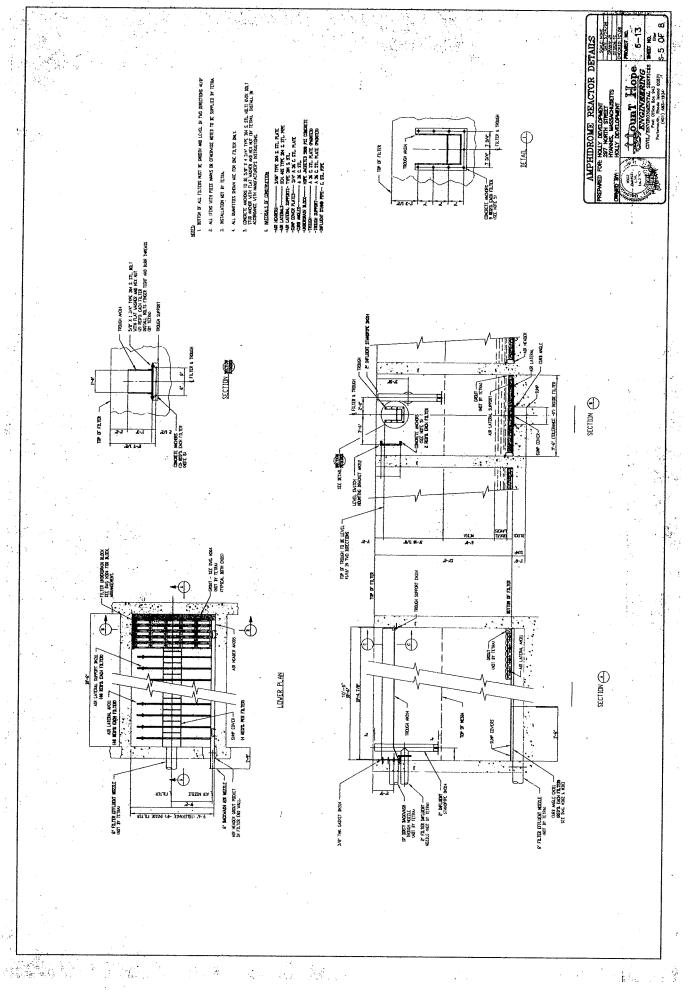

÷,

Since Specifications Specifications Specifications (1.14)	1028 Noiv Steer, Crollow, UN: (508) 945-5885 Eldredge Surveying & Engineering MINDCHIME POINT	Dote: $26-18-96$ Score: $Poper No.:$ Proper No.: Proper No.: 1792050E Sroet No.: $1792050E$
7. Perkins & Assoc. Inc. Ior. Sond Costle Machbole. Inc. and the server and any manufacture of the server and any manufacture of the server and any manufacture of the server and the s	<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	dome use dome ways with index-rester for the an entories, are a 10% certof the sector parses are increasing on the adding sector because the sector parses are increasing on the adding sector because a sector formation and the adding tertor is to a building the the adding based of the adding tertor and the adding tertor is a sector at the adding tertor and the adding tertor and the adding tertor because the adding tertor and the adding tertor and the adding tertor and the adding tertor and the adding tertor and the adding tertor and the adding tertor and the adding tertor and the adding tertor and the adding tertor adding tertor adding tertor adding tertor and the adding tertor adding tertor adding tertor adding tertor based and the adding tertor adding tertor adding tertor adding tertor based adding tertor adding tertor adding tertor adding tertor adding tertor adding tertor adding tertor adding tertor adding tertor adding tertor based adding tertor adding tertor adding tertor adding tertor adding tertor based adding tertor adding tertor adding tertor adding tertor adding tertor adding tertor adding tertor based adding tertor adding
		consistion is a start with the first patient allocation or mediates in constraints in starts. There is a point. There is a point. The start and the start patient of the first patient and the first and t
 Flores dotted 9-16-13086, Revised 11-24-13066, 7-29-13087, 11-06- 60 Flores dotted 9-16-13086, Revised 11-24-13066, 7-29-1307, 11-06- 60 Flores dotted with much 11/5 hand una with yohin 12/5 hand setup to provide means and the much 12/5 hand the much yohin 12/5 hand setup to provide means and the much 12/5 hand the much yohin 12/5 hand setup to provide means and the much 12/5 hand the much yohin 12/5 hand setup to provide means and the much 12/5 hand the much yohin setup to provide means and the much 12/5 hand the much yohin setup to provide means and the much yohin 12/5 hand the much setup to provide means and the much yohin 12/5 hand the much setup to provide means and the much yohin 12/5 hand the much setup to provide means and the much yohin 12/5 hand the much setup to provide much yohin 12/5 hand the much yohin 12/5	<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	Presente and even the contraction contraction of transport and even presents and the balance Contraction of the contraction by the contraction trans- present and the contraction and there membranes pixels for 0, out the trans- present and the contraction of the contraction of the contraction of the Contraction of the contraction of the contraction of the contraction present contraction of the contraction of the contraction of the region of the synchronization of the contraction of the contraction synchronization of the synchronization of the theorem while Contraction of the synchronization of the synchronizat
 Notes and Specifications Copied from Sheet 22X of a Set of Flona doted 9-15-1966. Revised 11-24-1966. The server eventues an index the product of the server s		 Russenson production and multiply and the production and and the production and and and and and and and and and an



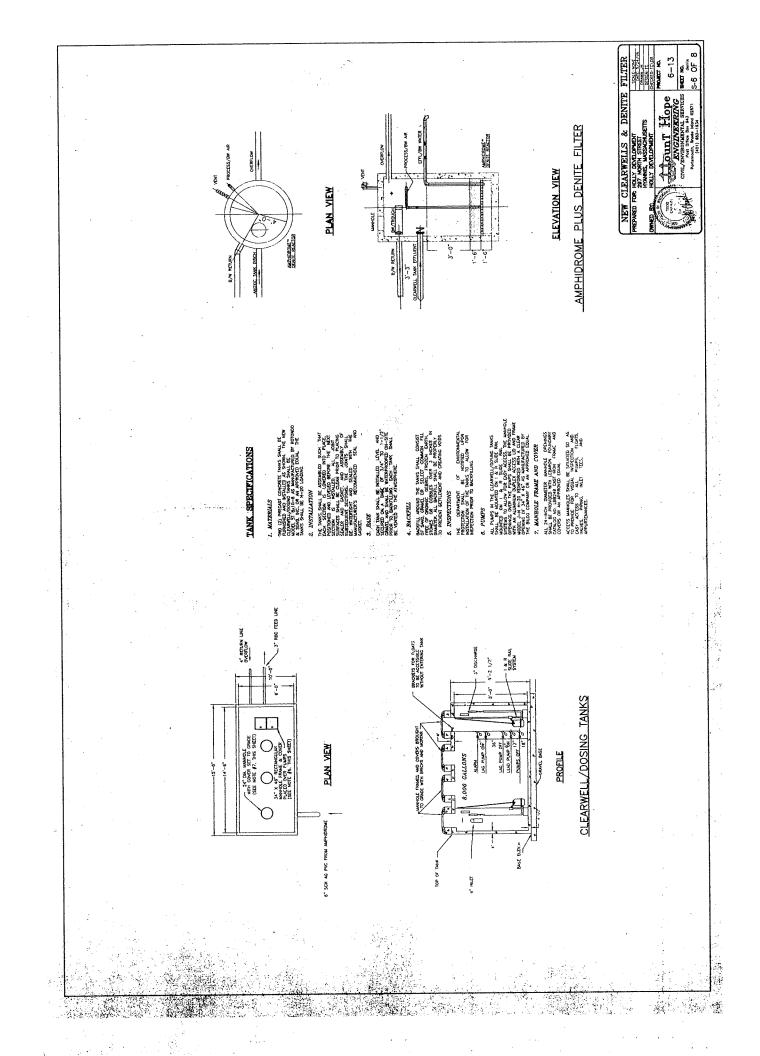

· ·

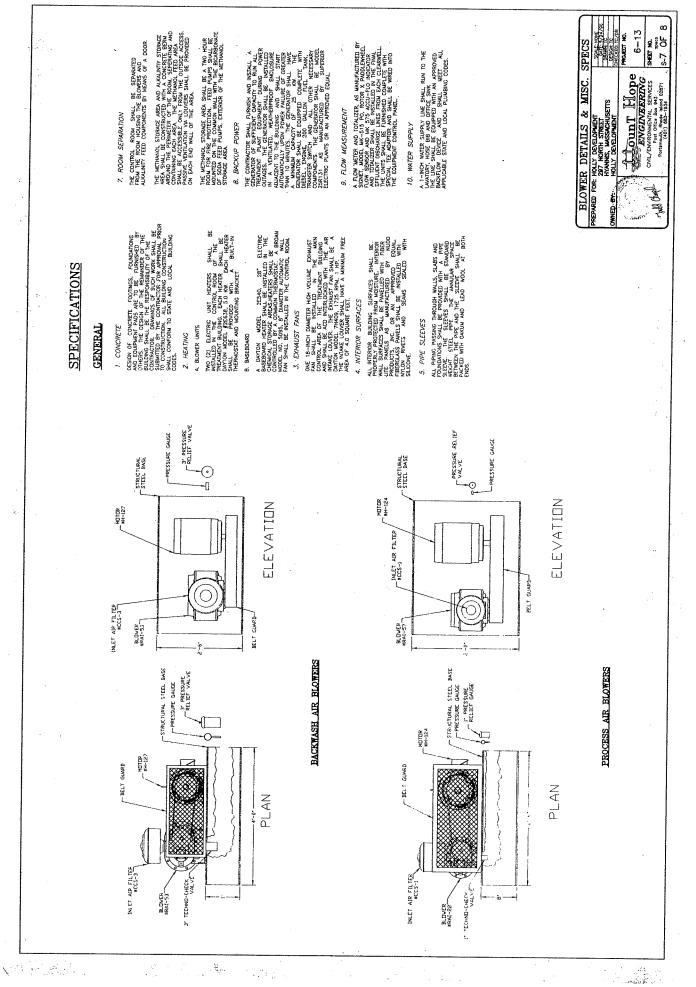
10 C

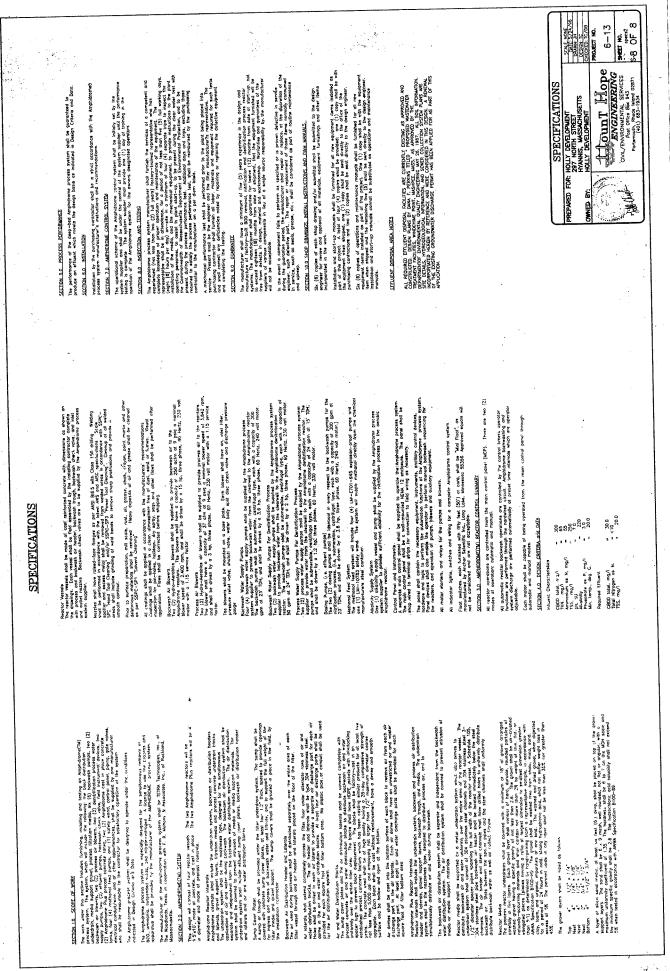


and the second second

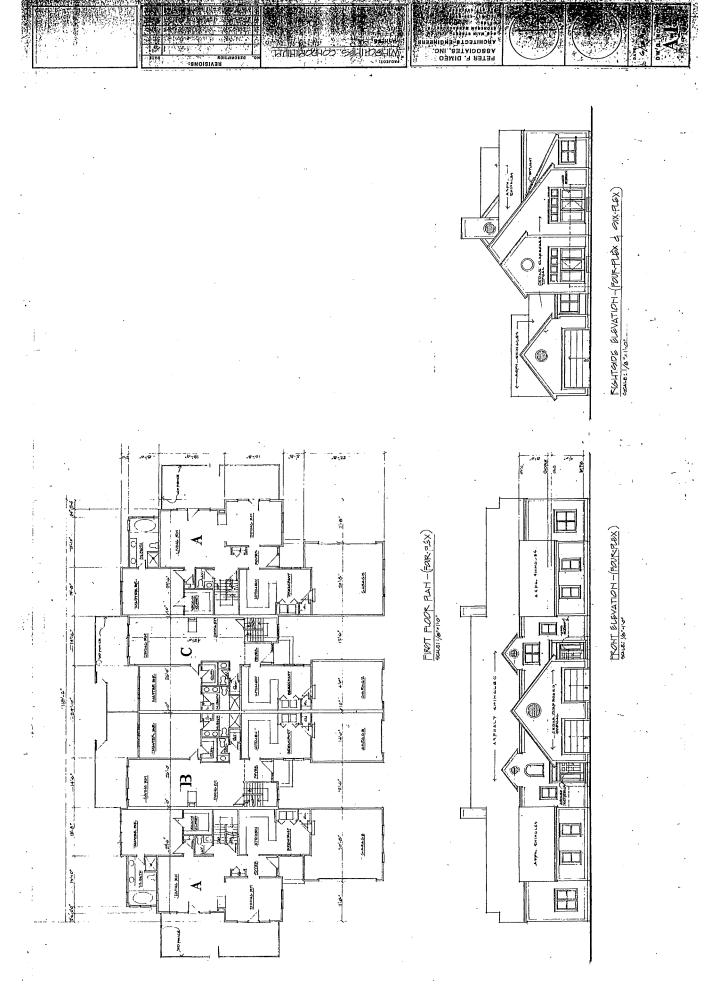
.



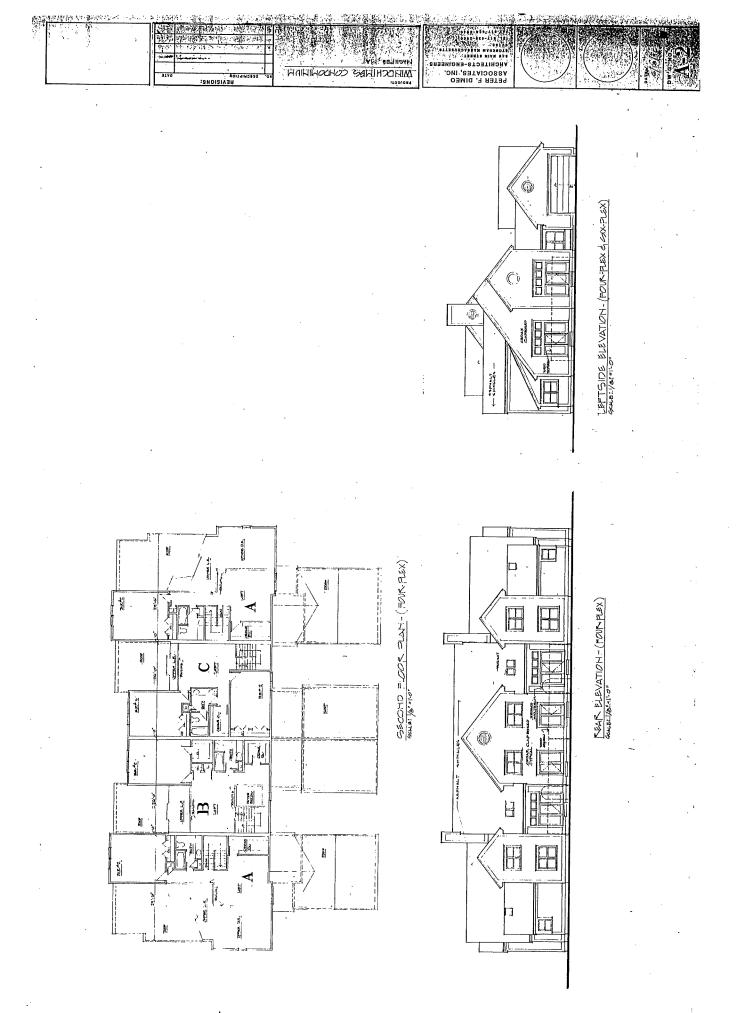

• •


· · ·

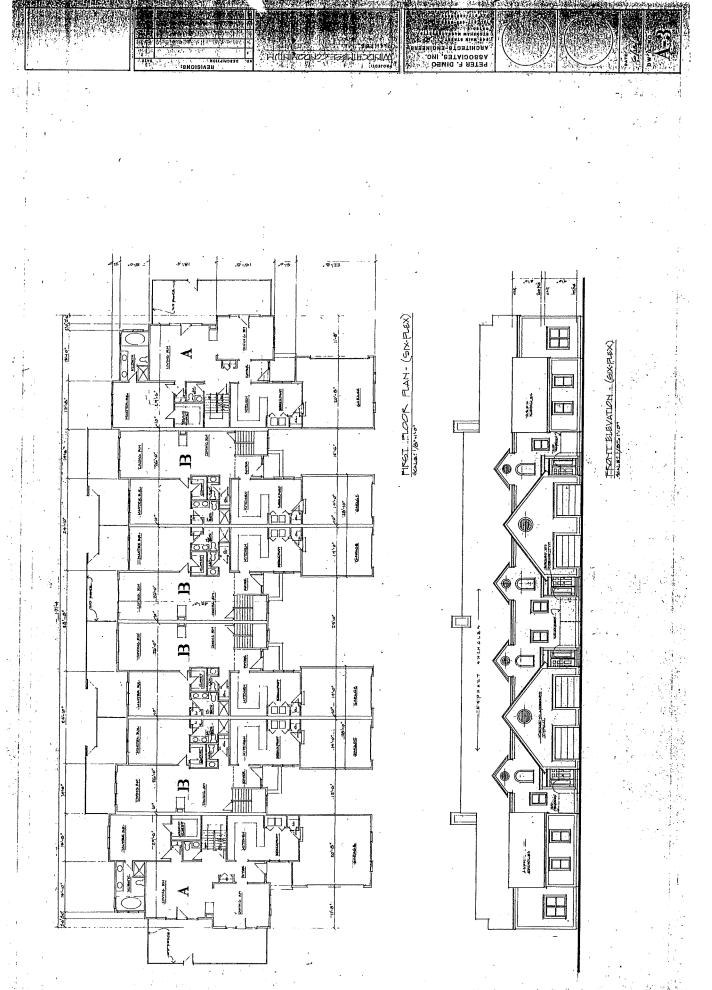
· · · ·

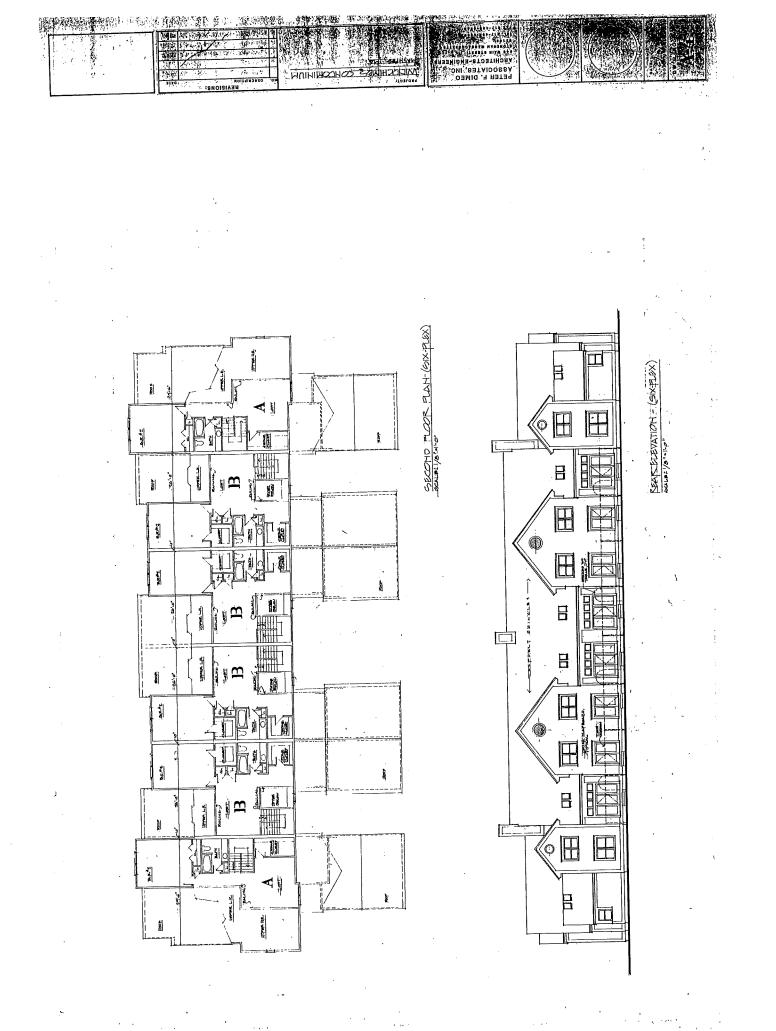


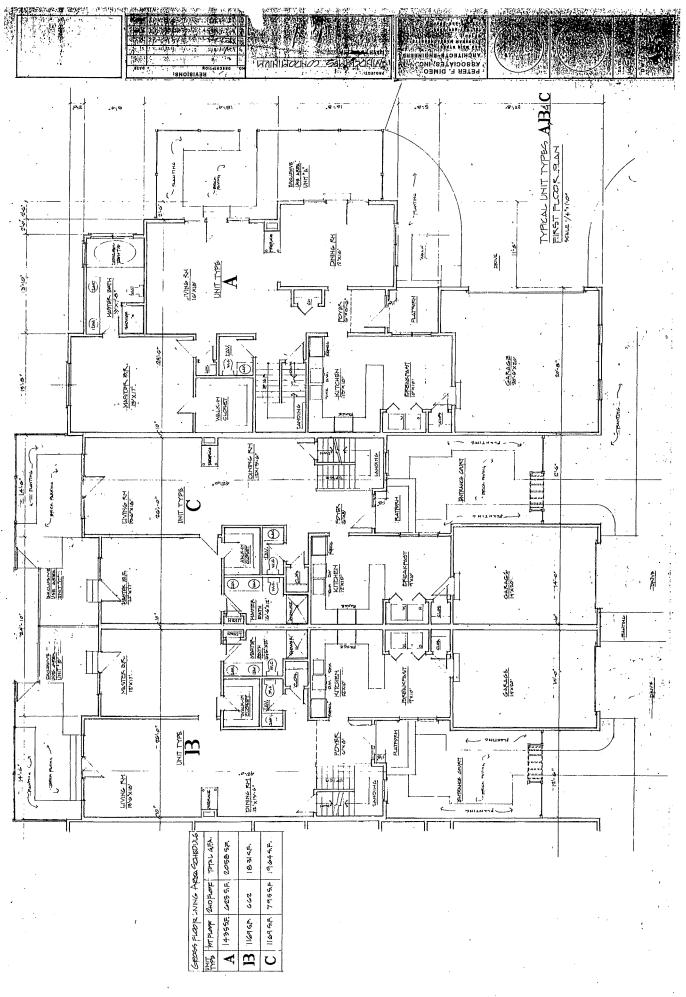
ab Litte Be

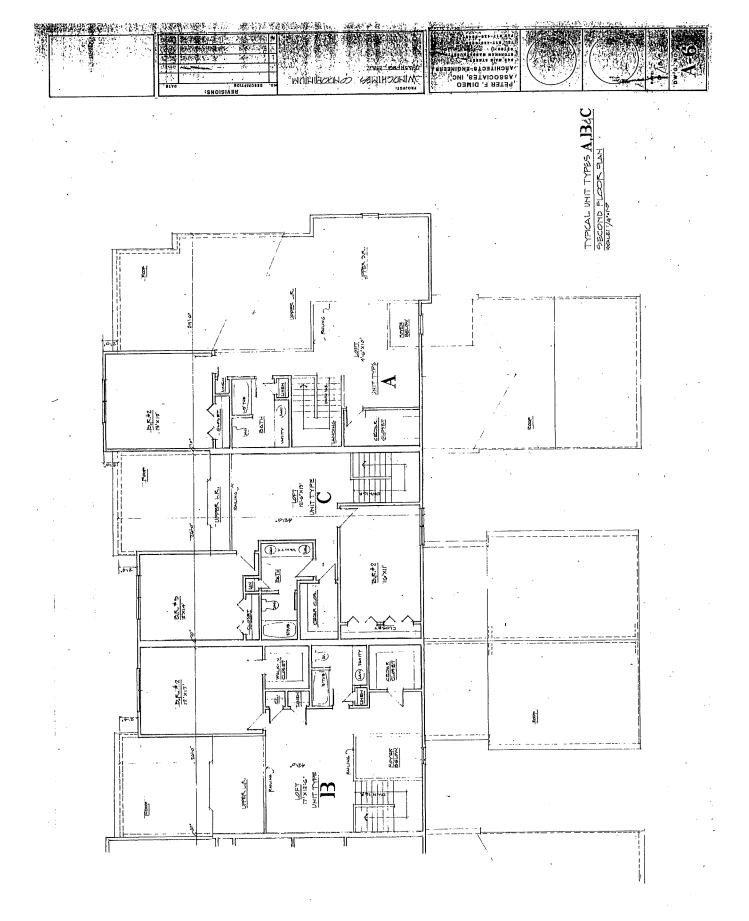


war data wash.

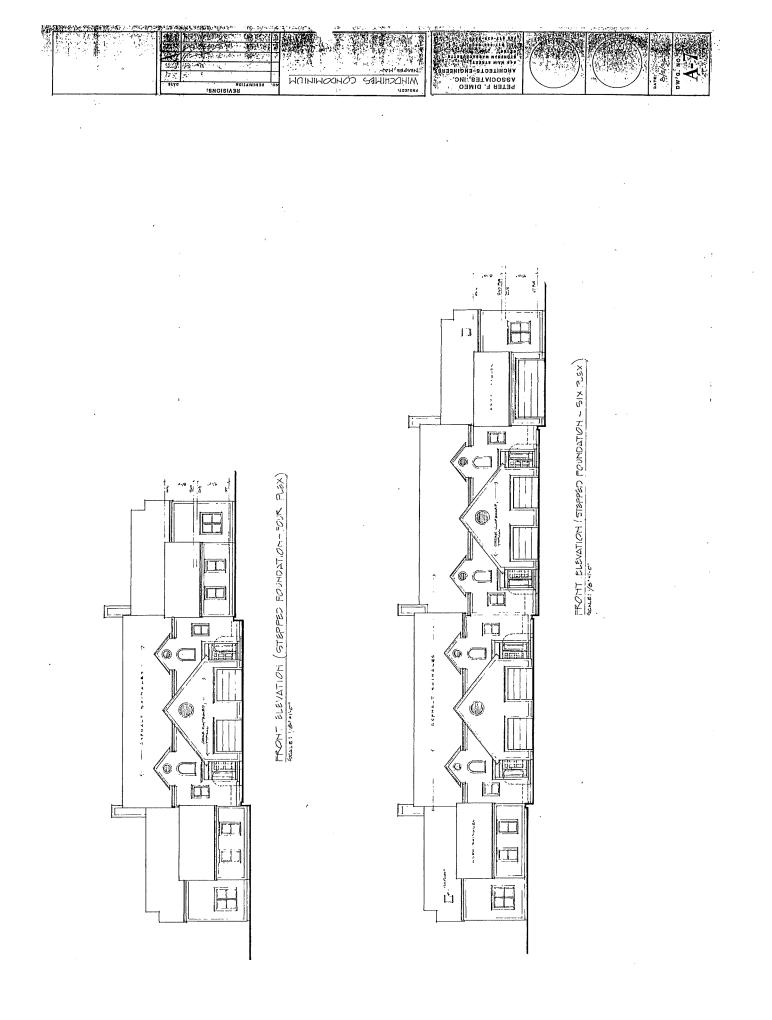

• • • • • • • • •


• • • • • • •



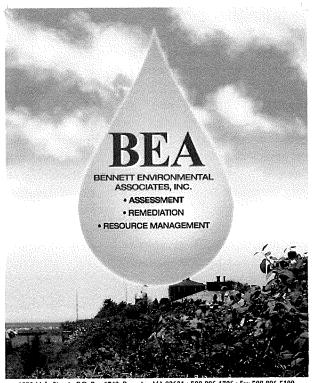

.

· · · · ·



· · ·

e ja S Li si si si



. Наст.,

WATER QUALITY MONITORING PROGRAM ANNUAL REPORT WINDCHIME POINT CONDOMINIUMS

90 Great Neck Road South Mashpee, MA

MAY 11, 2018

1573 Main Street - P.O. Box 1743, Brewster, MA 02631 ، 508-896-1706 ، Fax 508-896-5109 www.bennett-ea.com

BENNETT ENVIRONMENTAL ASSOCIATES, INC.

LICENSED SITE PROFESSIONALS & ENVIRONMENTAL SCIENTISTS & GEOLOGISTS & ENGINEERS

1573 Main Street - P.O. Box 1743, Brewster, MA 02631 💧 508-896-1706 🍐 Fax 508-896-5109 🌡 www.bennett-ea.com

May 11, 2018

BEA99-2252

TOWN OF MASHPEE PLANNING BOARD C/o Evan Lehrer, Town Planner Mashpee Town Offices 16 Great Neck Road North Mashpee, MA 02649

RE: WATER QUALITY MONITORING PROGRAM REPORT Groundwater Discharge Permit #263-2: Windchime Condominium Trust Great Neck Road South - Mashpee, MA

Dear Mr. Lehrer,

On behalf of the Windchime Condominium Trust, BENNETT ENVIRONMENTAL ASSOCIATES, INC. (BEA) has prepared the following annual report on the water quality monitoring of surface water and groundwater at the above referenced property, consistent with Exhibit C, Sections V and VI of the Special Permit recorded at the Barnstable County Registry of Deeds [Book 5734, Page 239-240] as conditions established during the initial approval of site The following report has been prepared to summarize the results of the development. March/June/September/December 2017 quarterly water quality sampling conducted at the Windchime Condominium Trust property in Mashpee, MA (herein referred to as "Windchime" or the "site"). This report serves to compare the most recent annual sampling results to previous filings, relative to water quality parameters, to evaluate impact specific to the development of the Windchime Condominium complex and on-site discharge of treated sewage at the site as distinguished from other wastewater and storm water discharges in an area that has experienced significant growth over the past 20 years since this investigation started. The quarterly sampling and analysis of select monitoring wells is consistent with Section B of the Groundwater Discharge Permit # 263-3 I(B)(2) Special Conditions for "Monitoring and Reporting" as established in prior annual reporting.

SITE DESCRIPTION

The subject Windchime Condominium Trust property is located some 3,000' southeast of the Mashpee Rotary, on Great Neck Road South [Refer to Figure 1]. The site contains some 70 acres of land area, the majority of which is upland. The Mashpee River defines the eastern boundary of the site, with associated fringe wetlands. The western boundary is defined by the road layout of Great Neck Road South, beyond which is a vacant property owned as part of Mashpee Commons with the Mashpee Commons complex further west off Falmouth Road. MAY 11, 2018 PAGE 2 OF 16

Southwest of the property is another shopping plaza (Roche Bros) and south additional multi residential housing complexes (Sea Meadow Condominiums, New Seabury). Some 250' north of the site is the Mashpee Commons Wastewater Treatment Facility (MC WWTF) and leaching beds associated with the Mashpee Commons commercial development along the Mashpee Rotary (intersection of Routes 28 and 151). Further to the north and east are the large undeveloped tracks of conservation lands owned by the Trustees of the Reservations.

The Windchime Condominium Trust Wastewater Treatment Facility (WWTF) is located approximately 375' from the edge of the vegetated wetland associated with the Mashpee River. Further, the Mashpee Commons (MC) WWTF is located within 500' of the Windchime WWTF, complicating interpretation of individual groundwater impacts to both groundwater and the Mashpee River with intermingled plumes of treated sewage solute. The MC WWTF is presently permitted for 180,000 gallons per day (gpd) and receives sewage from the Mashpee Commons commercial development at the Mashpee Rotary [Refer to Appendix C]. The Windchime WWTF is permitted for 40,000 gpd, a fraction (1/5) of the total treated wastewater permitted for discharge between these abutting facilities, discounting other abutting sources of treated and untreated sewage and directed storm water discharge from Route 28. Based on the estimated discharges and proximity of the Mashpee Commons leaching facilities to the Windchime leaching galleries, potential groundwater impact is expected to be cumulative of those impacts, with the Windchime WWTF potentially contributing some 22% of the treated wastewater discharged in this discrete area to the aquifer, eventually received by the Mashpee River. The baseline monitoring of historic groundwater and surface water quality at the site since 1991 provides an opportunity to evaluate cumulative impacts and to extrapolate and approximate individual impacts.

Monitoring wells B-2R, MW-3R and MC MW-2 are clearly up-gradient of the Windchime sewage treatment plant, but down-gradient/cross-gradient of the Mashpee Commons facility. Based on historic water quality relative to the location of select monitoring wells, down-gradient groundwater impacts are clearly attributed to treated wastewater discharge at both the Windchime and Mashpee Commons WWTFs in the finite study area. Notwithstanding, any such focused interpretation of the data is clearly a stated limitation of this report in the understanding of other significant regional impacts to the Mashpee River and Popponesset Bay estuary beyond the study area. Efforts continue to work with the Town of Mashpee to revise the Special Permit and participate in a larger and more comprehensive study, shared with abutters, within the Comprehensive Wastewater Planning activities presently underway.

SITE ENVIRONMENTAL/HYDROGEOLOGIC CONDITIONS

Groundwater exists within 40-50' of ground surface in the area of the WWTF leaching gallery as subject to seasonal variation. Regional groundwater contours indicate an easterly groundwater flow as consistent with site-specific groundwater level measurements made at the existing monitoring wells, which have been benchmarked to a common vertical datum [Refer to Figure 2]. Groundwater flow in this area is strongly influenced by the Mashpee River, some 500'

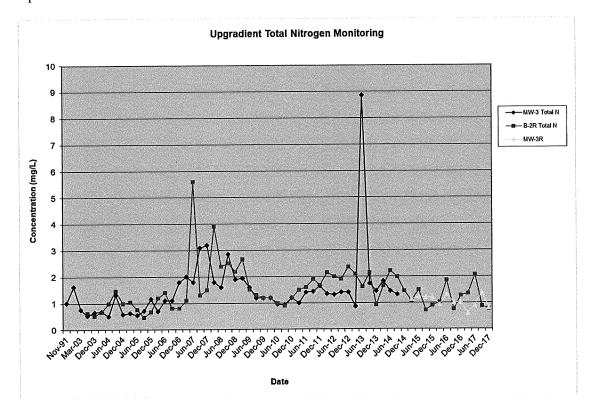
to the east of the site. The Mashpee River represents a regional groundwater discharge area (gaining stream), and has been identified as the primary down-gradient environmental receptor.

A review of the MA DEP BWSC GIS mapping program [Figure 3] shows the site as mapped within the recharge area of the Mashpee River approximately 300-600' (+/-) east of the Windchime Condominium Trust and Mashpee Commons wastewater treatment facilities. The majority of the Windchime property is further mapped by NHESP as "Estimated Habitat of Rare Wetlands Wildlife", inclusive of the areas of the two WWTFs. A significant buffer of naturally wooded area is maintained between the Windchime Development, the wastewater plant, and the Mashpee River. The site is not within any defined Interim or Zone II Wellhead Protection Area for a public water supply (PWS). One non-community public water supply well is located within one half mile southwest, and an additional community public water supply is located within one mile to the north-northeast in apparent cross-gradient positions to the site. As such, based on the hydrogeologic position of the public water supplies and proximity of groundwater, no impact to any existing water supply is expected, and no human receptors are considered, aside from the ecologic and recreational value of the Mashpee River.

GROUNDWATER ANALYSIS

As a requirement of the original Special Permit, four (4) supplemental monitoring wells and three (3) piezometers were installed by IEP, Inc., for the specified water quality-monitoring program (WQMP) in, or around, 1987. Since that time, several of these wells have been replaced due to damage or destruction. Monitoring wells MW-1, MW-2 and MW-4 are located along River Road some 150-300' down-gradient of the Windchime leaching galleries and intermediate to the Mashpee River. Monitoring well MW-3R is located some 200' (+/-) up-gradient of the Windchime leaching galleries, and 100' (+/-) cross-gradient of the Mashpee Commons leaching beds. An additional down-gradient monitoring well B-1 (formerly MW-5) exists on the Windchime Condominium property, also associated with the initial site development. Additional monitoring wells exist on the abutting property to the north, associated with the groundwater discharge permit monitoring program for the Mashpee Commons WWTF, including a well also identified as MW-2 (herein referred to as MC MW-2) [Refer to Site Plan - Appendix A].

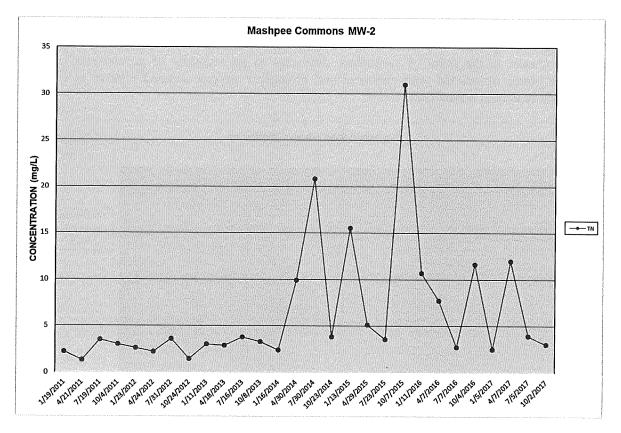
Static groundwater level measurements continue to demonstrate a general easterly groundwater flow direction. As such, monitoring wells MC MW-2, MW-3, and B-2R are representative of the specific contribution of wastewater impacts to groundwater from the MC WWTF [Refer to Site Sketch Plan – Appendix A]. Monitoring wells MW-1, MW-2 and MW-4, as well as piezometers PZ-2R and PZ-3R are down-gradient of both the Windchime Wastewater Treatment Facility (WWTF) and the Mashpee Commons Wastewater Treatment Facility (MC WWTF). The effects of treated wastewater effluent discharge at these monitoring locations are expected to be cumulative.


On March 16, June 30, September 13 and December 7, 2017, the depth to groundwater was measured in each monitoring well and piezometer prior to sampling, to determine standing water and well volume, and to qualify any seasonal variations in site-specific groundwater flow

MAY 11, 2018 PAGE 4 OF 16

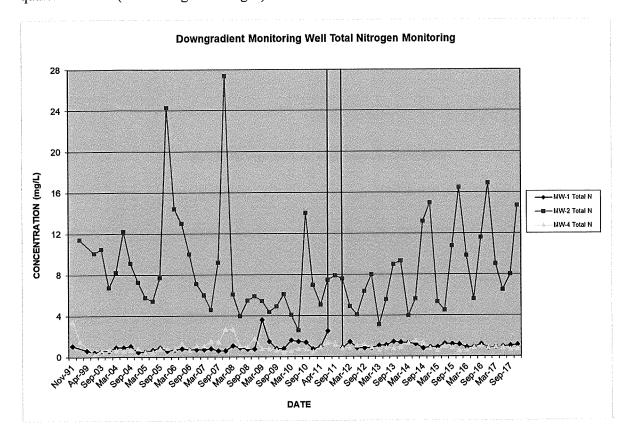
WINDCHIME CONDOMINIUM TRUST/BEA99-2252 WATER QUALITY MONITORING PROGRAM

direction. Field measurements of temperature, conductivity, dissolved oxygen and pH were recorded in all quarters [Refer to Monitor Well Sampling Logs - Appendix B]. BEA subsequently collected groundwater samples from five groundwater monitoring wells and three piezometers. Groundwater samples were preserved on ice in a cooler, and sent to Alpha Analytical in Westborough, MA for certified analyses of wet chemistry. In addition, on September 13, 2017 groundwater samples were collected from monitoring wells MW-1, MW-2, MW-3R and MW-4 and properly preserved in appropriate containers for volatile organic compounds (VOCs) analyses by specified EPA 624 method, required annually by the GWDP. Laboratory analytical results of historic analyses and quarterly groundwater samples collected in March through December 2017 are enclosed as part of the water quality tracking charts in Appendix D.


The concentrations of sewage indicators, such as nitrate and sodium, with associated field measurements of low dissolved oxygen and elevated conductivity, are used to evaluate the influence of treated wastewater effluent discharge on groundwater quality, and to identify and define the solute plume of influence. In general, the concentrations of sodium, nitrate and conductivity will be highest immediately down-gradient of wastewater discharge points in the treated effluent plume, and may be expected to decrease away from the point source, associated with dispersion, dilution and natural attenuation. Likewise, decreased dissolved oxygen is expected closest to the point of subsurface discharge as an indicator of groundwater impact inside the plume associated with chemical and biological oxygen demand relative to organic compounds in treated wastewater.

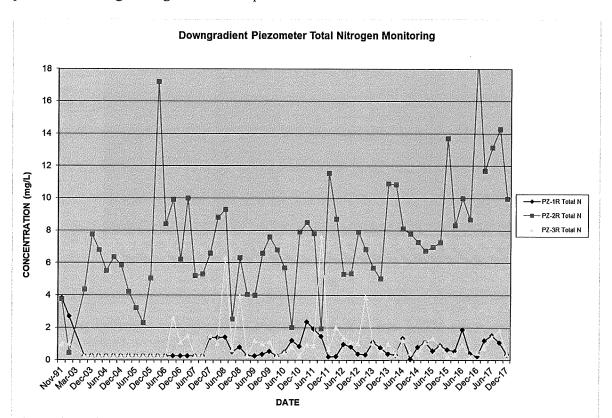
MAY 11, 2018 PAGE 5 OF 16

In the majority of groundwater sampling events conducted from 1991 through the present, up-gradient monitoring wells B-2R and MW-3/MW-3R report total nitrogen between 1-3 mg/L. Periodic fluctuation is noted, and clear spikes in total nitrogen concentrations are observed in B-2R in June 2007 and MW-3 in June 2013, as outliers to observed trends. No total nitrogen concentrations exceeding 10 mg/L have been reported in testing conducted since 1991 although a general increasing trend in background conditions shows that total nitrogen has increased from 0.5 + /- mg/L to 1.5 + /- mg/L from the 2003 baseline.


Moderate concentrations of sodium, and low to moderate concentrations of dissolved oxygen and conductivity were recorded during the reporting period. These results are consistent with the ambient groundwater quality conditions documented in previous groundwater sampling events, including the original sampling results reported in November 1991. Throughout the project history, the overall increasing trend of nutrient concentrations and site-specific groundwater flow computations indicate that these up-gradient monitoring wells are influenced by up-gradient development.

The monitoring well referred to as MC MW-2 is associated with the Mashpee Commons WWTF and prescribed for quarterly sampling as part of that facility's groundwater discharge permit as a location specifically down-gradient of the MC WWTF leaching field, and not under

MAY 11, 2018 PAGE 6 OF 16

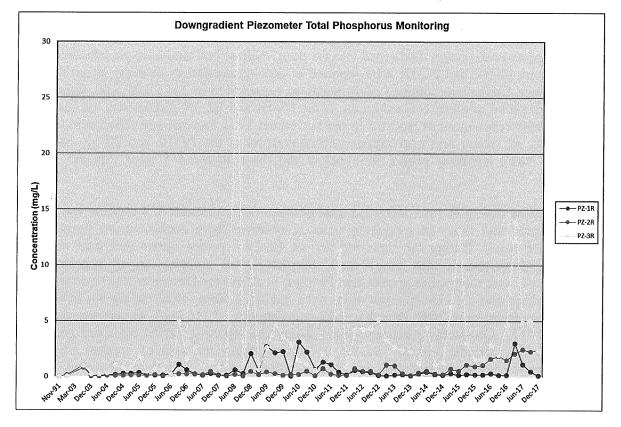

influence of discharge from the WC WWTF. MC MW-2 is a location of particular interest in review of groundwater quality in this area as it is up-gradient of the Windchime WWTF leaching field and is located in the area where the greatest nutrient impact has routinely been identified since testing began in 1991. This area of greatest impact also includes monitoring wells MW-2 and PZ-2. MC MW-2 has shown elevated nutrient concentrations with a distinctive increasing trend following the MC WWTF 2014 plant expansion. Historic data from MC MW-2 was only available as part of this study intermittently, but elevated concentrations were identified at this well location in November 1991 prior to the development of the Windchime WWTF (nitrate 21.7 mg/L), in October 2005 (nitrate 8.31 mg/L and total nitrogen 9.15 mg/L), and in the fourth quarter of 2008 (total nitrogen 8.8 mg/L).

Monitoring wells MW-1 and MW-4 are located in clearly down-gradient positions to both the Mashpee Commons and the Windchime wastewater treatment facilities, directly intermediate to the Mashpee River [Refer to Site Sketch Plan – Appendix A]. Groundwater samples at these locations have generally reported nitrate and total nitrogen concentrations as less than background concentrations identified in the B-2R and MW-3 up-gradient wells. Concentrations of total nitrogen in down-gradient MW-1 and MW-4 monitoring wells remain consistent with those established as baseline in November 1991. These test results indicate lowlevel nutrient impact from on-site wastewater discharge to down-gradient groundwater quality at these locations. Although these wells are clearly in the mapped solute plume, it appears that MAY 11, 2018 PAGE 7 OF 16

there is likely preferential travel of the solute within the stratified sands that make up the shallow unconfined aquifer.

Groundwater sampled from down-gradient monitoring well MW-2, located within the area where greatest groundwater impacts have been observed, has demonstrated significant nutrient impact dating back to baseline testing conducted in 1991, pre-dating WWTF construction and treated effluent discharge at the subject property. From a 1991 baseline of approximately 12 mg/L, nitrate and total nitrogen concentrations in MW-2 have fluctuated to below 10 mg/L generally from March 2008 through June 2014, then demonstrated an increasing trend with concentrations periodically above 10 mg/L through December 2017. The volatility of these measurements with periodic spikes typically in December sampling, some three (3) months beyond peak seasonal flow, is likely an effect of seasonal increased flow as a function of groundwater flow velocity and the travel time from the leaching fields to the down-gradient monitoring wells. Conductivity, sodium, and chloride concentrations in 2017 were reported as consistent with historic concentrations, indicative of solute impact from treated wastewater at this location. This same volatility in total nitrogen is also seen in the further downgradient piezometers along the edge of the Mashpee River.

MAY 11, 2018 PAGE 8 OF 16


Since the Mashpee River empties into Popponesset Bay, the concentrations of nitrate/total nitrogen at the piezometers along the Mashpee River provide information about the quality of groundwater being discharged into the river. Nitrate and total nitrogen concentrations at piezometers PZ-1R and PZ-3R were reported at concentrations less than the Water Quality Based Effluent Limitations standard of 10 mg/L, as represented in 314 CMR 5.00, throughout 2017. Nitrate/total nitrogen concentrations at the PZ-1R and PZ-3R piezometers are generally consistent with concentrations reported in the November 1991 baseline and subsequent testing. Furthermore, all nitrate and total nitrogen concentrations at the PZ-1R and PZ-3R locations during the 2017 reporting period were below the most stringent 5 mg/L Special Permit guidelines.

Baseline testing in 1991 identified total nitrogen concentrations of 4 mg/L at the PZ-2R location. Since that time, an increasing trend is observed with concentrations periodically exceeding 10 mg/L. During the reporting period, PZ-2R reported nitrate and total nitrogen concentrations as greater than the 5 mg/L Special Permit guideline in all quarters, and concentrations were reported as greater than 10 mg/L in all but the December 2017 quarter (9.97 mg/L). Sodium and chloride concentrations have increased since initial testing but have been relatively consistent since 2003, though a spike concentration of 110 mg/L sodium was reported in March 2017. Conductivity concentrations during the reporting period remained generally consistent, with periodic spikes. PZ-2R is located within the area of greatest identified groundwater impact, and concentrations are generally consistent with those observed in MC MW-2 and MW-2, representing the movement of the treated wastewater plume toward the Mashpee River. These locations appear to be the axis of the solute plume influence by the combined treated sewage discharge.

Consideration of loading rates (lbs/day) from average flow and analytical results is used to show the effects of wastewater treatment and natural attenuation, in consideration of cumulative impacts to the Mashpee River as the identified receptor. The total nitrogen loading rates were calculated for select wells within the central plume area; MC MW-2, MW-2 and PZ-2R as a conservative, positively biased measure wherein "worse case" wells are considered. Calculations were made using the average annual water usage in million gallons per day (MGD) from the MC WWTF for MC MW-2, located up-gradient of the Windchime WWTF, and using the average annual water usage in MGD from the Windchime WWTF for MW-2 and PZ-2R, located down-gradient of the Windchime WWTF. Loading rates were calculated as 1.89 lbs. per day, 0.95 lbs. per day, and 1.21 lbs. per day, respectively.

MAY 11, 2018 PAGE 9 OF 16

WINDCHIME CONDOMINIUM TRUST/BEA99-2252 WATER QUALITY MONITORING PROGRAM

Monitoring of total phosphorus at the PZ-1R and PZ-2R locations has shown concentrations below 5 mg/L since testing began in 1991. From December 2008 through September 2010, as well as in March 2017, PZ-1R total phosphorus concentrations increased to between approximately 2-3 mg/L. PZ-2R also showed increased total phosphorus concentrations in the 2-3 mg/L range throughout the 2017 reporting period. This trend may indicate an increase in total phosphorus impact from upstream sources. PZ-3R is located in the southern-most, downstream position at the base of the Mashpee River. PZ-3R has consistently demonstrated the greatest total phosphorus concentrations, with an increasing trend greater than the other two piezometers observed since June 2004. These increasing trends likely represent breakthrough of phosphorus, which is naturally adsorbed in sands with high iron content as typical of the glacial outwash sands that are predominant in the area. Presently under the MA DEP GWDP, phosphorus is not a parameter for which treatment is required.

The down-gradient monitoring wells MW-1, MW-2 and MW-4, as well as the upgradient MW-3R, were sampled for volatile organic compounds (VOCs, Method 624) in September 2017, as required by the Groundwater Discharge Permit for the Windchime WWTF. Laboratory analysis of groundwater samples reported all VOCs tested as Non-Detect (ND) in each of the four monitoring wells. As such, no volatile organic impact to groundwater is apparent, associated with either the Windchime or Mashpee Commons WWTF treated effluent discharges. The laboratory report for VOCs analysis is included in Appendix D. MAY 11, 2018 PAGE 10 OF 16

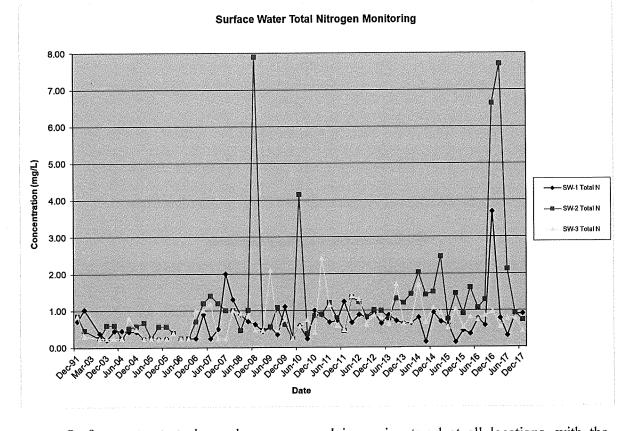
SURFACE WATER ANALYSIS

Quarterly surface water samples were also collected by BEA as part of the water quality monitoring program. Water samples were collected from the Mashpee River at locations upstream (SW-1), mid-stream (SW-2), and down-stream (SW-3) of the Windchime Condominium Trust WWTF and leaching gallery, as roughly corresponding with the piezometer locations [Refer to Site Plan]. Field measurements of dissolved oxygen, conductivity, pH and temperature were recorded at each location. Surface water samples were collected from mid-depth in the river and stored on ice until transferred under a proper chain-of-custody to Alpha Analytical. Laboratory analytical results of historic surface water sampling and surface water samples collected during the reporting period by BEA are presented in Appendix D. Based on baseline findings reported by IEP, Inc., increasing conductivity values in down-stream samples are associated with tidal influence and saltwater feeding into the estuary at high tides. It is suspected that such tidal effect influences other chemical and physical properties. As such, surface water is likely being discharged to the River, to normalize data and exclude saltwater interference and associated dilution.

The Mashpee River is considered a coastal/marine Class SA Outstanding Resource Water (ORW), in accordance with the provisions of 314 CMR 4.00. These waters are designated an excellent habitat for fish, other aquatic life and wildlife, and for primary and secondary contact recreation, and are generally suitable for shellfish harvesting without depuration. Nutrient thresholds vary from basin to basin, largely dependent on size, bathymetry and flushing capacity. Nitrogen is generally identified as the limiting factor in saltwater eutrophication associated with coastal waters. Elevated nitrogen concentrations serve as nutrients for potential congestive plant and algae growth. Elevated temperatures increase the rate of plant and algae decomposition. High decomposition rates demand increased dissolved oxygen, thereby limiting the oxygen available to aquatic life and bacteria necessary for maintaining ecological balance. Per 314 CMR 4.05(4), dissolved oxygen shall not be less than 6.0 mg/L, temperature shall not exceed 85° F, and pH shall be in the range of 6.5 - 8.5 for Class SA - ORW coastal waters.

Dissolved oxygen was recorded at or above the 6 mg/L limitation in all surface water measurements throughout 2017, meeting the Class SA – ORW standard. Temperature was reported within the standard at all locations as well. The temperature and dissolved oxygen measurements reported limit the rate of potential decomposition, which indicates that the Mashpee River is not presently eutrophic. Observations made during sampling events relative to the clarity of water and a lack of congestive plant and algae growth support this conclusion. Further, based on this particular fluvial environment wherein tidal influence is exhibited, the continuous surface water flow and marine flushing effect may limit the potential for eutrophication.

Measurements of pH were reported below the 6.5 threshold periodically throughout 2017 at the three monitoring locations. Wherein the elevation of the Mashpee River is similar to the

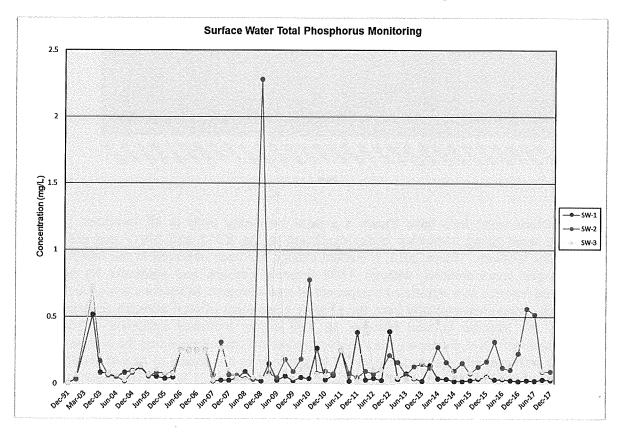

MAY 11, 2018 PAGE 11 OF 16

elevation of groundwater, and groundwater is discharged as a gaining stream at the time of testing on an outgoing tide, the low pH is attributed to naturally acidic groundwater conditions, rather than as a function of wastewater influence as would tend to be a buffer, and increase pH. Surface water sampling throughout 2017 was conducted around ebb-to-low tides. Conductivity values at the SW-1 up-stream and SW-3 down-stream locations were consistent with baseline and historic testing. It is noted that SW-3 has reported moderate to high conductivity values since baseline testing conducted in 1991 and 1999. At the SW-2 mid-stream location, conductivity values were higher than baseline testing but generally consistent with testing conducted since 2003. The Mashpee River is tidal by nature and the highest conductivity readings generally are found at the SW-3 location, as furthest down-stream and closest to the mouth of the river.

Nitrogen is generally identified as the limiting factor in saltwater eutrophication associated with coastal waters. As such, review of nitrate/total nitrogen in the surface water within the Mashpee River is also critical in the review of surface water impairment and the potential for environmental impact. The Mashpee River is subject to the promulgated standards for Class SA Outstanding Resource Water (ORW) for coastal marine waters, in accordance with the provisions of 314 CMR 4.00. According to the Massachusetts Estuaries Project, "Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for Popponesset Bay, Mashpee and Barnstable, Massachusetts", a total nitrogen threshold of 0.38 mg/L has been established for the Popponesset Bay system as a target, wherein achieving this concentration at a sentinel station within Popponesset Bay would be supportive of a high-quality infauna habitat. Based on the "Linked Watershed-Embayment Model..." the 0.38 mg/L target concentration in Popponesset Bay corresponds to a total nitrogen range of 0.525 - 0.422 mg/L along the mid to lower Mashpee River, respectively. As such, based on the relative position along the Mashpee River, the 0.525 ppm (mg/L) background is considered as a threshold in review of a potential eutrophication impacts associated with total nitrogen measured at the Windchime surface water stations.

MAY 11, 2018 PAGE 12 OF 16

WINDCHIME CONDOMINIUM TRUST/BEA99-2252 WATER QUALITY MONITORING PROGRAM



Surface water tests have shown a general increasing trend at all locations, with the increasing trend being somewhat more significant at the SW-2 and SW-3 mid-stream and downstream locations. Since 2010, a marked change has been observed in the component of total nitrogen concentrations, wherein TKN (organic nitrogen and ammonia N) began to routinely be reported as a significant component of total nitrogen. In baseline testing and testing up to 2010, nitrate had typically been the primary component of total nitrogen concentrations. Based on the increase in total nitrogen, as well as the increased incidence of reportable concentrations of TKN, it appears that observed spikes of total nitrogen may be associated with an outside influence of organic nitrogen and ammonia N as not typical of treated sewage. The most likely alternative source of organic nitrogen and ammonia N is fertilizer associated with storm water run-off. A storm water culvert was previously reported to the north of PZ-1, SW-1 and an inventory of direct and indirect storm water discharges is being investigated by BEA through the Mashpee Department of Public Works.

Total nitrogen was reported as greater than the 0.525 ppm threshold in all quarterly testing conducted at the three surface water monitoring locations. At the upstream SW-1 location, total nitrogen was reported below the 0.525 ppm threshold in June 2017, and total nitrogen was reported below 0.525 ppm at the downstream SW-3 location in December 2017. The remaining testing at these locations, as well as all testing at the SW-2 location during 2017, were reported as greater than the threshold.

MAY 11, 2018 PAGE 13 OF 16

The SW-1 location is considered reflective of background conditions up-stream of the study area, outside the influence of the MC and WC treated wastewater discharges. The SW-2 and SW-3 locations are noted as within the Projected Solute Transport Pathway of both the MC WWTF and the Windchime WWTF. However, wherein surface water samples are collected from the Mashpee River, the marine outlet of a regional drainage basin, additional natural and anthropogenic off-site sources of nutrient impact represent a significant contribution and a noted limitation to the interpretation of the data. In fact, a comparison between the upgradient SW-1 sampling location and the downgradient SW-3 locations shows an actual reduction in total nitrogen concentration from 0.729 mg/L to 0.648 mg/L. Regardless, concentrations of total nitrogen taken in surface water samples are above the TMDL eutrophication threshold indicating a net contribution to nutrient levels in Popponesset Bay from the Mashpee River.

Phosphorus is generally identified as the limiting factor in freshwater eutrophication. Preliminary research indicates that no critical phosphorous load has been established for the Mashpee River. Phosphorous concentrations typically vary from season to season, and total phosphorous measurements are directly proportional to turbidity and suspended solids. Phosphorus concentrations in surface water result from various sources, such as surface runoff of rainwater and stormwater direct discharge from roadway conveyance systems, as well as discharge of treatment wastewater to groundwater. Historic, elevated phosphorus concentrations MAY 11, 2018 PAGE 14 OF 16

reported in the Mashpee River were generally associated with high antecedent groundwater levels and greater precipitation, contributing to increased surface water runoff. The most effective control against increasing phosphorous loads is to provide subsurface discharge of stormwater from roadway runoff in order to reduce runoff discharge to the river, as well as to locate sewage leaching galleries outside a 200' buffer from the river, as established by the Rivers Act. Further evaluation of phosphorus data developed would be facilitated by a TMDL for critical phosphorus nutrient loads for the estuary wherein only nitrogen is considered the limiting factor is saltwater estuaries.

Phosphorus concentrations in samples collected from the Mashpee River were considered as an indicator of potential eutrophication to the Mashpee River as a tidal estuary and subject to periodic brackish conditions. Total phosphorus concentrations spiked at the SW-2 and SW-3 locations between December 2008 and June 2009, and concentrations since that time have been declining to concentrations generally consistent with baseline and testing conducted through September 2008. In the 2017 reporting period, the difference between average concentrations at the down-stream SW-3 location and the up-stream SW-1 location was nominal (0.064 mg/L), indicative of the contributions from the MC and Windchime WWTFs. In the absence of a TMDL for phosphorus and based on observations other readings made in the river contrary to eutrophic conditions, further evaluation of this data is beyond the scope of the monitoring program.

EVALUATION OF WASTEWATER TREATMENT

Through 2017, laboratory analysis of total nitrogen concentrations in the effluent discharge from the MC WWTF remained below the 10 mg/L discharge limit. A spike in total nitrogen concentration (47.06 mg/L) was reported in April 2014, potentially related to loss of treatment capacity during the up-grade of the treatment facility. That spike likely influenced the elevated concentration of total nitrogen identified in MC MW-2 in October 2015 (31 mg/L), with the effects of that discharge probable to be observed in MW-2 and PZ-2R, as the plume of groundwater moves eastward toward Mashpee River.

At the Windchime WWTF, laboratory analysis of total nitrogen concentrations in the effluent discharge was reported as greater than 10 mg/L throughout 2017. The greatest concentration reported over the year was 44.29 mg/L in November 2017. These concentrations will also contribute to elevated nutrient concentration in MW-2 and PZ-2R over the 1-2-year time of solute travel from the point of treated effluent discharge to the MW-2 monitoring well and eastward toward Mashpee River. BEA is presently conducting a comprehensive review of treatment plant function and recommendations for upgrades in consideration of facility age, outdated design and obsolescence of software on half of the Windchime Board of Directors. This work is intended as a proactive measure ahead of the Groundwater Discharge Permit regulatory requirements. BEA has considered reconfigured of the Amphidrome plant as a "continuous feed" from the earlier "side stream" configuration which would enhance treatment capacity as operations control adjustments have been exhausted. Such conversions are cost effective and have been found to be reliable in meeting GWDP requirements. Notwithstanding,

the actual technology employed and design will be based on a review of alternatives in the context of both state and local requirements.

SUMMARY AND CONCLUSIONS

Based on more than a decade of quarterly environmental testing of groundwater and surface water conditions at the Windchime Condominium property, sufficient data exists to document impacts associated with wastewater discharge from area development, inclusive of the Windchime Condominiums as a fractional contributor. Since the 1991 baseline testing, substantial development has resulted in additional wastewater generation and stormwater runoff being discharged into the Mashpee River. Evaluation of groundwater and surface water quality under this investigation has shown a clear area of most significant impact identified at the upgradient MC MW-2 location and traveling towards the Mashpee River, with elevated total nitrogen concentrations subsequently seen in down-gradient wells MW-2 and PZ-2R. Elevated nutrient concentrations have been documented in these areas since baseline testing, and while concentrations have fluctuated, they have generally remained elevated. The presence of the impact up-gradient of the Windchime WWTF clearly demonstrates the contribution of off-site sources to nutrient concentrations in the area, while the fluctuation and continued elevated nutrient concentrations support the conclusion that concentrations of nutrients in groundwater and impact to surface water is the results of co-mingling wastewater plumes, as well as off-site point and non-point sources.

In general, concentrations of nutrients in the piezometers and within surface water have demonstrated an increasing trend since historic testing. It is noted that the measured total nitrogen and phosphorus concentrations would indicate nutrient loads within and along the Mashpee River are sufficient to cause eutrophication in a freshwater environment. However, based on measured pH, temperature and dissolved oxygen concentrations, and observed clarity of water and lack of congestive plant/algae growth, the Mashpee River appears to be relatively healthy and not presently eutrophic in nature. Impact is attributed to area development and the cumulative effect of co-mingling wastewater plumes, as well as off-site point and non-point sources. Based on the respective Groundwater Discharge Permit approved daily flows for the facilities, Windchime would contribute to the nutrient load from these named sources, as a fraction of the total load.

Based on the complexity in the interpretation of the targeted data under this investigation relative to regional issues of nutrient loading in the Mashpee River watershed it is the recommendation of BEA that future water quality monitoring by the Windchime Condominium Trust be reconsidered by the Mashpee Planning Board, and coordinated with municipal wastewater management efforts.

BENNETT ENVIRONMENTAL ASSOCIATES, INC. (BEA) as successor operator of the Windchime WWTF has made process control adjustments and targeted repairs and maintenance to better review the treatment capacities of the system over the past two years. It is recognized that the WC WWTF, as designed and configured, is reaching an age of planned MAY 11, 2018 PAGE 16 OF 16

WINDCHIME CONDOMINIUM TRUST/BEA99-2252 WATER QUALITY MONITORING PROGRAM

obsolescence and that from a regulatory standpoint, is unable to consistently meet nitrogen/nitrate requirements. Presently BEA is conducting a comprehensive review of the treatment plant towards upgrade to consistently meet nitrogen/nitrate requirements in the backdrop of the Town of Mashpee Watershed Nitrogen Management Plan and unique Special Permit requirements.

Should you have any questions regarding this work, or the findings of the annual report, please contact our office.

Sincerely yours, BENNETT ENVIRONMENTAL ASSOCIATES, INC.

nan

Samantha Farrenkopf, Environmental Scientist Project Manager

David C. Bennett, LPG., CGWP., LSP Hydrogeologist - President

Encl. Supporting Documentation [Appendices A-E]

CC (via electronic copy):

Anthony Colletti – American Properties Team Glen Harrington - Mashpee Board of Health Andrew McManus - Mashpee Conservation Commission

WATER QUALITY MONITORING PROGRAM WINDCHIME POINT CONDOMINIUMS 90 Great Neck Road South - Mashpee, MA

MAY 11, 2018

Prepared For:

MASHPEE PLANNING BOARD c/o Evan Lehrer, Town Planner Mashpee Town Offices 16 Great Neck Road North - Mashpee, MA 02649

On Behalf Of:

Windchime Condominium Trust c/o Anthony Coletti, Property Manager American Properties Team 500 West Cummings Park - Woburn, MA 01801

Prepared By:

BENNETT ENVIRONMENTAL ASSOCIATES, INC. 1573 Main Street - P.O. Box 1743 Brewster, MA 02631

APPENDIX A: Reference Plans

-Figure 1: Site Locus Plan [USGS Topographic Quad., Cotuit, MA. 1999] (Excerpt)

-Figure 2: Ground-Water Resources of Cape Cod, Massachusetts [LeBlanc et al, 1986] (Excerpt)

-Figure 3: MA DEP BWSC GIS MAP [Sandwich Quad., 1999] (Excerpt)

-Site Sketch Plan entitled, "Groundwater and Surface Water Quality Program", prepared by BENNETT ENVIRONMENTAL ASSOCIATES, INC., dated 6/02/99 [Revised 4/10/18]

APPENDIX B: Field Reports

-Monitor Well/Surface Water Sample Logs [3/16/17, 6/30/17, 9/13/17, 12/07/17]

APPENDIX C: Reference Literature

-MA DEP Permitted Treated Effluent Discharge Limits

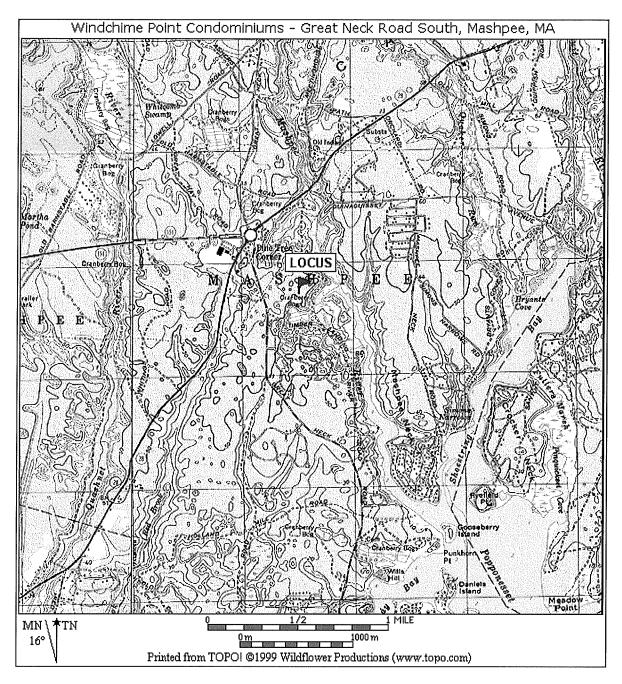
-"Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for Popponesset Bay, Mashpee and Barnstable, Massachusetts" - Executive Summary

APPENDIX D: Laboratory Analysis

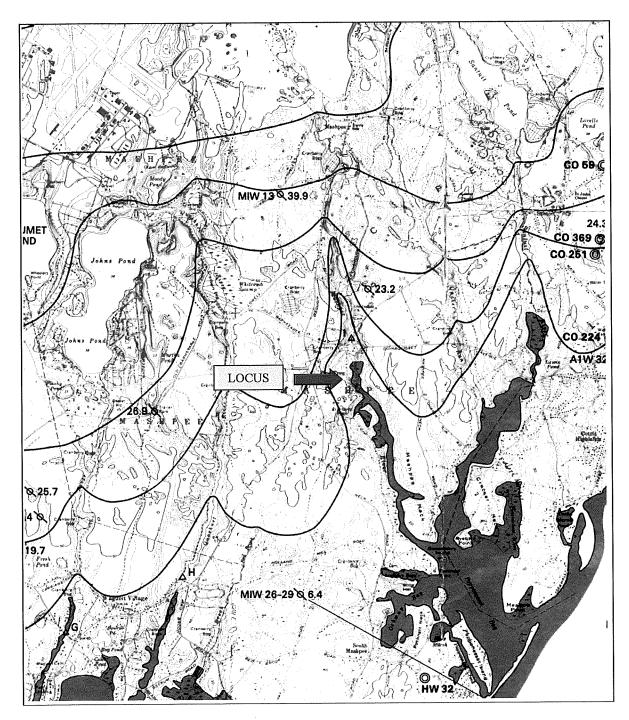
- Effluent Discharge Monitoring [Windchime Point WWTF, Mashpee Commons WWTF]

- Historic Laboratory Analytical Spreadsheets

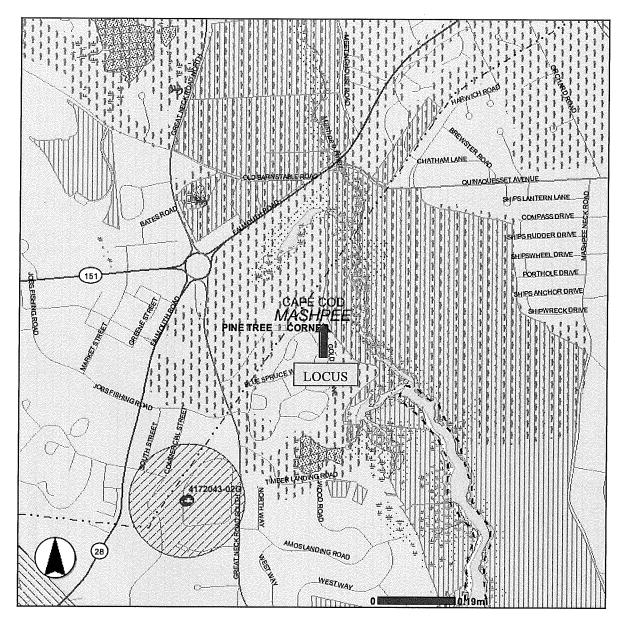
- Laboratory Analysis: Groundwater, Surface Water [Alpha Analytical, 3/23/17 ID L1708191]


- Laboratory Analysis: Groundwater, Surface Water [Alpha Analytical, 7/10/17 ID L1722512]

- Laboratory Analysis: Groundwater, Surface Water [Alpha Analytical, 9/21/17 ID L1732637]


- Laboratory Analysis: Groundwater, Surface Water [Alpha Analytical, 12/15/17 ID L1745363]

APPENDIX E: Quality Assurance/Quality Control


APPENDIX A

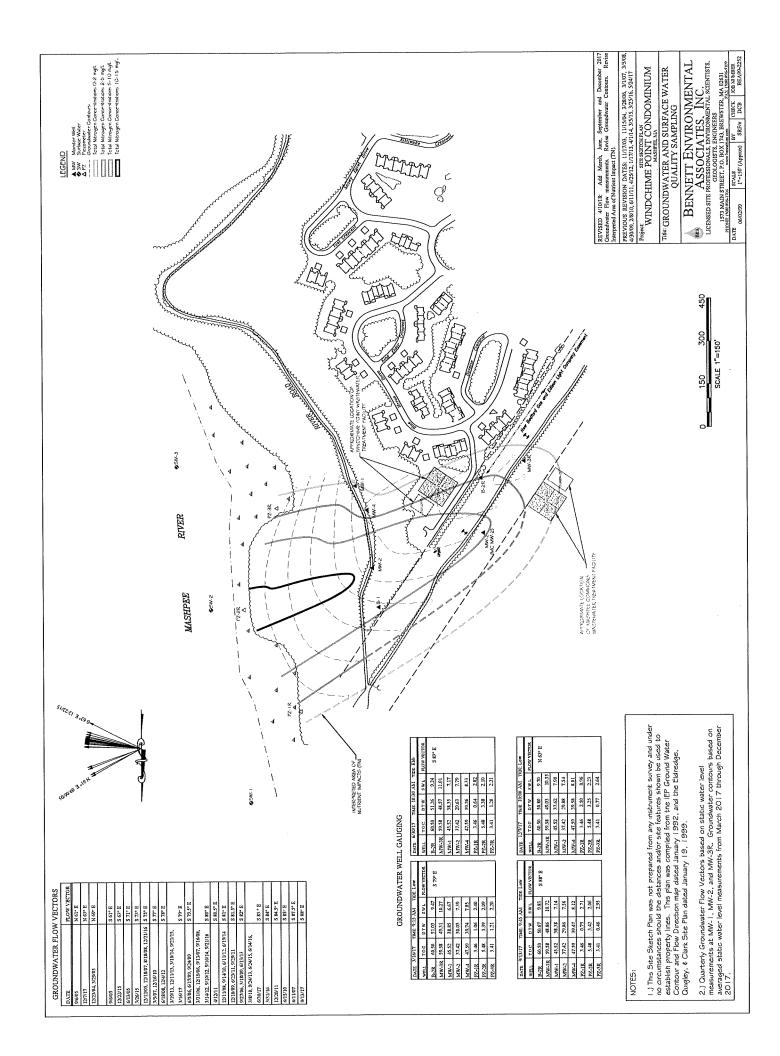

FIGURE 1: The subject site is located some 3,000' southeast of the Mashpee Rotary, on Great Neck Road South. The Site contains 70 acres, the majority of which is upland. The Mashpee River defines the eastern boundary of the Site, with associated fringe wetlands. The western boundary is defined by the road layout of Great Neck Road South, beyond which are upland woodlands. South of the site are similar upland wooded areas with light residential development. Some 250' north of the site is the Mashpee Commons Wastewater Treatment Facility and leaching beds associated with the Mashpee Commons commercial development along the Mashpee Rotary (intersection of Routes 28 and 151).

FIGURE 2: Groundwater exists within 40-50' of ground surface in the area of the WWTF leaching gallery as subject to seasonal variation. Regional groundwater contours indicate an easterly groundwater flow as consistent with site-specific groundwater level measurements made at the existing monitoring wells. Groundwater flow in this area is strongly influenced by the Mashpee River, some 500' to the east of the site. The Mashpee River represents a regional groundwater discharge area and has been identified as the primary downgradient environmental receptor.

FIGURE 3: A review of the MA DEP BWSC GIS mapping program shows the site as mapped within the recharge area of the Mashpee River some 300-600' (+/-) east of the Windchime Condominium Trust and Field's Point wastewater treatment facilities. The majority of the Windchime property is further mapped by NHESP as "Estimated Habitat of Rare Wetlands Wildlife", inclusive of the areas of the two WWTFs. The site is not within any defined Interim or Zone II Wellhead Protection Area for a public water supply (PWS). One non-community public water supply well is located within one-half of a mile southwest and an additional community public water supply is located within one mile to the north-northeast in apparent cross-gradient positions to the site. As such, based on the hydrogeologic position of the public water supplies and proximity of groundwater, no impact to any existing water supply is expected and no human receptors are considered aside from the recreational value of the Mashpee River.

APPENDIX B

Induction Condominium. Induction Condominium Condominium. Induction Condominium Condominium. Induction Condominium Condominim Condominium Condominium Condominium Condominium Condom	1573 Main Street, P.O. Box 1743 Brewster, MA 02631	eet, P.O. B 02631	lox 1743		BENNETT LICENSED SITE PH	VETT]	ENVIR	SENNETT ENVIRONMENTAL ASSOCIATES, INC Licensed site professionals, environmental scientists, geologists, engineers	ENTA	L ASS(ASSOCIATES, entists, geologists, end	TES, 1 ISTS, ENGIP	INC.	Phone: (508) 896-1706 Fax: (508) 896-5109
Windchime CondominiumsDate(s): $31/6/17$ Time: $9:15$ AMTide:90 Great Neck Road South, Mashpee.ob Number:.ob Number: $BEA99-2523$.ob Number: $9:16$ AP $9:16$ APTide: $Carty Brady & Great Neck Road South, Mashpee.ob Number:BEA99-2252.ob Number:BEA99-2252.ob Number:October Neck Road South, MashpeeTide:Carty Brady & Great Neck Road South, MashpeeNamberNamberNamberSender Neck Road South, MashpeeNamberEiner of tartyDate(s)NamberNamberNamberNamberNamberNamberEiner of tartyNamberNamberNamberNamberNamberNamberNamberEiner of tartyNamberNamberNamberNamberNamberNamberNamberEiner of tartyNamberNamberNamberNamberNamberNamberNamberEiner of tartyNamberNamberNamberNamberNamberNamberNamberEiner of tartyPartSala10.1610.271.284.0NTSala105Einer of tartyNamberNamberNamberNamberNamberNamberNamberNamberEiner of tartyNamberNamberNamberNamberNamberNamberNamberEiner of tartyNamberNamberNamberNamberNamberNamberNamberEiner of tartySala10.1610.271.0$						MO	IOTIN	M SNI	/ELL S	AMPLI	NG LC	DG		
90 Great Neck Road South, Mashpee Job Number: BEA99-2252 Carly Brady & Greg Brehm Easuring Point: Easuring Point: Fanda Panda Fanda Panda		Vindchir	ne Condo	minims					3/16/17		-	Time:	9:15 AM	
Carly Brady & Greg Brehm. Measuring Point: Ground Surface or T.O.C. Tool Carly Brady & Greg Brehm. Statifie Water Statifie Volume Rasuring Point Display (model) Tool Tool Display (model) Tool		O Great	Neck Ro	ad South	Mashnee	-		lob Number		BEA99-2.	252			
Eller, of pention (eac) Disolved (mathin (eac) Disolved (mathin (eac) Disolved (mathin (eac) Disolved (mathin (eac) Disolved (mathin (eac) Disolved (mathin (eac) Disolved (mathin (eac) Disolved (mathin (eac) Disolved (mathin (eac) Disolved (mathin (mathin) Disolved (mathin) Dis		Carly Bra	ady & Gr	eg Brehm	1			Measuring I		Ground Sur	face or T.(TOC	
Flate, of pressure (mean) Total (math (mean) Watting (mean)	•													
60.50 59.00 51.03 7.97 9.47 1.28 4.0 NT 5.10 6.37 137 46.21 TDS 8 59.58 59.47 49.31 10.16 10.27 1.63 5.0 NT 5.32 3.06 210 46.73 TDS 7 45.22 50.70 38.85 11.85 6.67 1.90 6.0 NT 5.69 5.05 160 46.61 TDS 37.42 50.70 38.85 11.85 6.67 1.90 6.0 NT 6.50 5.85 305 49.40 TDS 37.42 36.20 39.74 7.76 7.85 1.24 4.0 NT 6.50 5.85 305 49.40 TDS = 47.50 39.74 7.76 7.85 1.24 4.0 NT 6.50 5.05 49.40 TDS = 37.40 10.6 2.0 10.0 1.50 8.73 10.25 10.27 10.25 <td>Well Number</td> <td>Elev. of reference point (feet)</td> <td>Total Depth of Well (fect)</td> <td>Depth to Water (feet)</td> <td>Standing Water Height (feet)</td> <td>Water Table Elevation (feet)</td> <td>Static Volume (gallons)</td> <td>Volume Purged (gallons)</td> <td>(mdd) 101-14</td> <td>Hď</td> <td>Dissolved Oxygen (mg/L)</td> <td>Conductivity</td> <td>Temperature (F)</td> <td>Comments:</td>	Well Number	Elev. of reference point (feet)	Total Depth of Well (fect)	Depth to Water (feet)	Standing Water Height (feet)	Water Table Elevation (feet)	Static Volume (gallons)	Volume Purged (gallons)	(mdd) 101-14	Hď	Dissolved Oxygen (mg/L)	Conductivity	Temperature (F)	Comments:
R 59.58 59.47 49.31 10.16 10.27 1.63 5.0 NT 5.32 3.06 210 46.73 TDS= 1	B-2R	60.50	59.00	51.03	7.97	9.47	1.28	4.0	NT	5.10	6.37	137	46.21	TDS = 0.204
45.52 50.70 38.85 11.85 6.67 1.90 6.0 NT 5.69 5.05 160 46.61 TDS= 45.52 50.70 38.85 11.85 6.67 1.90 6.0 NT 5.69 5.05 160 46.61 TDS= 74.2 36.20 30.03 6.17 7.39 0.99 3.0 NT 6.50 5.85 30.5 49.40 TDS= 47.59 47.50 39.74 7.76 7.85 1.24 4.0 NT 6.50 5.83 41 38.73 TDS= 3.46 4.00 1.06 2.94 2.40 0.47 1.5 NT 6.25 6.83 41 38.73 TDS= 3.46 1.06 2.40 0.47 1.5 NT 6.25 6.83 41 38.73 TDS= 3.41 5.00 1.21 2.79 0.61 2.0 NT 6.55 6.49 75 37.79 TDS= </td <td>MW-3R</td> <td>59.58</td> <td>59.47</td> <td>49.31</td> <td>10.16</td> <td>10.27</td> <td>1.63</td> <td>5.0</td> <td>NT</td> <td>5.32</td> <td>3.06</td> <td>210</td> <td>46.73</td> <td>TDS = 0.215</td>	MW-3R	59.58	59.47	49.31	10.16	10.27	1.63	5.0	NT	5.32	3.06	210	46.73	TDS = 0.215
45.52 50.70 38.85 11.85 6.67 1.90 6.0 NT 5.69 5.05 160 46.61 $TDS =$ 37.42 36.20 30.03 6.17 7.39 0.99 3.0 NT 6.50 5.85 30.5 49.40 $TDS =$ 47.59 47.50 39.74 7.76 7.85 1.24 4.0 NT 6.56 6.83 41 38.73 $TDS =$ 3.46 4.00 1.06 2.94 2.40 0.47 1.5 NT 6.25 6.83 41 3.73 $TDS =$ 3.46 4.00 1.06 2.94 2.40 0.47 1.5 NT 6.25 6.83 41 3.73 $TDS =$ 3.41 5.00 1.21 2.94 2.40 0.47 1.5 NT 6.55 6.83 41 3.73 $TDS =$ 3.41 5.00 1.21 2.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 $TDS =$ 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.99 75 37.79 $TDS =$ 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 75 31.92 $TDS =$ NA <td></td>														
37.42 36.20 3.0.3 6.17 7.39 0.99 3.0 NT 6.50 5.85 30.5 49.40 TDS= 47.59 47.50 39.74 7.76 7.85 1.24 4.0 NT 4.90 8.78 150 47.46 TDS= 3.40 1.06 2.94 2.40 0.47 1.5 NT 6.25 6.83 41 37.79 TDS= 3.46 4.00 1.06 2.94 2.40 0.47 1.5 NT 6.25 6.83 41 37.9 TDS= 3.41 5.00 1.21 2.09 0.34 1.0 NT 6.12 11.55 37.79 TDS= 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 TDS= 3.41 5.00 1.21 3.79 NT 6.65 6.49 75 37.79 TDS= NA NA	1	45.52	50.70	38.85	11.85	6.67		6.0	NT	5.69	5.05	160	46.61	TDS = 0.236
47.59 47.50 39.74 7.76 7.85 1.24 4.0 NT 6.90 8.78 150 47.46 TDS= 3.46 4.00 1.06 2.94 2.40 0.47 1.5 NT 6.25 6.83 41 38.73 TDS= 5.48 5.50 3.39 2.11 2.09 0.34 1.0 NT 6.12 11.55 235 41.92 TDS= 5.41 5.00 1.21 3.79 0.34 1.0 NT 6.12 11.55 235 41.92 TDS= 3.41 5.00 1.21 3.79 0.61 2.0 NT 6.65 6.49 75 37.79 TDS= 3.41 5.00 1.21 3.79 0.61 2.0 NT 6.65 6.49 75 37.79 TDS= NA NA NA NA NA NA NA NA 13.56 65 39.41 TDS= NA	1-mm	37.42	36.20	30.03	6.17	7.39	66.0	3.0	NT	6.50	5.85	305	49.40	TDS = 0.305
3.46 4.00 1.06 2.94 2.40 0.47 1.5 NT 6.25 6.83 41 38.73 TDS = 5.48 5.50 3.39 2.11 2.09 0.34 1.0 NT 6.12 11.55 235 41.92 TDS = 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 TDS = 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 TDS = 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 TDS = NA 13.66 65 33.38 TDS = NA NA NA NA NA NA NA 11.30 235 <td< td=""><td></td><td>47 59</td><td>47.50</td><td>39.74</td><td>7.76</td><td>7.85</td><td></td><td>4.0</td><td>NT</td><td>4.90</td><td>8.78</td><td>150</td><td>47.46</td><td>TDS = 0.219</td></td<>		47 59	47.50	39.74	7.76	7.85		4.0	NT	4.90	8.78	150	47.46	TDS = 0.219
5.48 5.50 3.39 2.11 2.09 0.34 1.0 NT 6.12 11.55 235 41.92 TDS= 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 TDS= 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 TDS= NA S33 39.41 TDS= NA NA NA NA NA NA NA S35 39.41 TDS= NA NA NA NA NA NA S35	P7-1R	3.46	4.00	1.06	2.94	2.40	0.47	1.5	ΤN	6.25	6.83	41	38.73	TDS = 0.069
3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 TDS= 3.41 5.00 1.21 3.79 2.20 0.61 2.0 NT 6.65 6.49 75 37.79 TDS= NA NA NA NA NA NA NA NA 3.31 13.66 65 33.38 TDS= NA NA NA NA NA NA NA NA 3.31 13.66 65 33.38 TDS= NA NA NA NA NA NA NT 6.21 11.30 285 39.41 TDS= NA NA NA NA NA NA NA 6.51 11.13 335 38.51 TDS=	P7_7R	5 48	5.50	3.39	2.11	2.09	0.34	1.0	TN	6.12	11.55	235	41.92	TDS = 0.373
NA S.31 13.66 65 33.38 TDS= NA NA NA NA NA NA NA NA 3.31 13.66 65 33.38 TDS= NA NA NA NA NA NA NA 6.21 11.30 285 39.41 TDS= NA NA NA NA NA NA NA 6.51 11.13 335 38.51 TDS= NA NA NA NA NA NA NA 6.51 11.13 335 38.51 TDS=	P7_2R	3 41	5.00	1.21	3.79	2.20	0.61	2.0	NT	6.65	6.49	75	37.79	TDS = 0.129
NA S33 39.41 TDS = NA NA NA NA NA NA NA 6.21 11.30 285 39.41 TDS = NA NA NA NA NA NA NA 335 38.51 TDS =	VTC-77 T	11-0												
NA NA NA NA NA NA NA Science 39.41 TDS = 39	SW-1	NA	NA	NA	NA	NA	NA	NA	NT	3.31	13.66	65	33.38	TDS = 0.12
NA NA NA NA NA NA NA Second Paragraphic Second Paragraparagraphic Seco	2 m2	AN	NA	NA	NA	NA	NA	NA	NT	6.21	11.30	285	39.41	TDS = 0.474
	SW-3	NA	NA	NA	NA	NA	NA	NA	NT	6.51	11.13	335	38.51	
			1											
	Samples co	llected up	on complet	tion of purg	e requireme	ents and sta	bilization o	f field paraı	meters.					
Samples collected upon completion of purge requirements and stabilization of field parameters.														
Samples collected upon completion of purge requirements and stabilization of field parameters.														

1573 Main Street, P.C Brewster, MA 02631	1573 Main Street, P.O. Box 1743 Brewster, MA 02631	Box 1743		BEN	BENNETT LICENSED SITE PR	ENVI 10 20 20 20 20 20 20	RONM LLS, ENVIRG	IENTA DNMENTAL	SENNETT ENVIRONMENTAL ASSOCIATES, INC LICENSED SITE PROFESSIONALS, ENVIRONMENTAL SCIENTISTS, GEOLOGISTS, ENGINEERS	OCIA s, geolog	TES, ISTS, ENGI	INC.	Ph Ph	Phone: (508) 896-1706 Fax: (508) 896-5109
					M	MONITO	RING V	VELL S	ITORING WELL SAMPLING LOG	ING L(96			
Job Name:		Windchime Condominiums	lominium	s			Date(s):	6/30/17			Time.	10-30 414	E.T.	Dhh
Location:	90 Great	t Neck Ro	oad South	90 Great Neck Road South, Mashpee	ė		Job Number:	sr:	BEA99-2252			MIC OC OT		E00
Sampler:	Carly B1	Carly Brady & Greg Brehm	reg Brehr	μ			Measuring Point:	Point:	Ground Surface or T.O.C	rface or T.(TOC		
Well Number	Elev. of reference point (feet)	Total Depth of Well (feet)	Depth to Water (feet)	Standing Water Height (feet)	Water Table Elevation (feet)	Static Volume (gallons)	Volume Purged (gallons)	HNU PI-101 (mdd)	Hd	Dissolved Oxygen (mg/L)	Conductivity	Temperature (F)	Comments:	S:
B-2R	60.50	59.00	51.26	7.74	9.24	1.24	4.0	NT	6.37	6.76	302	55.87	TDS = 0.253	
MW-3R	59.58	59.47	48.57	10.90	11.01	1.74	5.5	ΤN	6.42	1.06	225	53.78	1 11	
MW-1	45.52	50.70	38.35	12.35	7.17	1.98	6.0	NT	6.26	4.65	244	53.48	TDS = 0.212	
MW-2	37.42	36.20	29.63	6.57	7.79	1.05	3.0	ΤN	6.42	8.12	225	56.22	TDS = 0.187	
MW-4	47.59	47.50	39.26	8.24	8.33	1.32	4.0	NT	6.27	8.97	219	53.65	TDS = 0.189	
PZ-1R	3.46	4.00	0.64	3.36	2.82	0.54	1.5	NT	6.55	4.20	70	63.47	TDS = 0.083	
PZ-2R	5.48	5.50	3.38	2.12	2.10	0.34	1.5	NT	6.58	6.30	406	67.35	TDS = 0.294	
PZ-3R	3.41	5.00	1.20	3.80	2.21	0.61	2.0	NT	6.42	4.45	74	60.47	TDS = 0.089	
SW-1	NA	NA	NA	NA	NA	NA	NA	NT	6.86	6.86	137	69.80	TDS = 0.097	
SW-2	NA	NA	NA	NA	NA	NA	NA	NT	6.80	7.94	305	68.15	TDS = 0.219	
SW-3	NA	NA	NA	NA	ŇA	NA	NA	NT	6.70	7.36	702	68.81	TDS = 0.500	
NOTES:	NA = Noi	t Applicabl	e; NE = No	NA = Not Applicable; NE = Not Established; NT = Not Ta	sd; NT = N(ot Taken							· ·	
Samples co	llected upo.	n completic	on of purge	Samples collected upon completion of purge requirements and stabilization of field parameters.	its and stab.	ilization of	field param	leters.						

1573 Main Street, P.O. Box 1743 Brewster, MA 02631	tt, P.O. Bc 12631	ix 1743		BENT	BENNETT E LICENSED SITE PROF	ENVIL	SENNETT ENVIRONMENTAL ASSOCIATES, INC Licensed site professionals, environmental scientists, geologists, engineers	ENTA	L ASS ¹ SCIENTISTS	ASSOCIATES, entists, geologists, end	FES, 1 STS, ENGIN	INC. NEERS	Phone: (508) 896-1706 Fax: (508) 896-5109
					MC	IOTINC	MONITORING WELL SAMPLING LOG	VELL S	AMPLI	ING LO	Ð		
Job Name: Wi	indchim	te Condo	Windchime Condominiums				Date(s):	9/13/17			Time:	9:45 AM	Tide: Low
	Great 1	Veck Ros	90 Great Neck Road South.	Mashpee		-	Job Number:		BEA99-2252	252			
•	eo Brel	ım & Di	Greø Brehm & Diane Caliri				Measuring Point:	•	Ground Surface or T.O.C	face or T.C		TOC	
•	222						I						
Well Fe	Elev. of reference point (feet)	Total Depth of Well (feet)	Depth to Water (feet)	Standing Water Height (feet)	Water Table Elevation (feet)	Static Volume (gallons)	Volume Purged (gallons)	(mdd) 101-1d NNH	Hď	Dissolved Oxygen (mg/L)	Conductivity	Temperature (F)	Comments:
B-2R 6	60.50	59.00	50.67	8.33	9.83	1.33	4.0	NT	5.50	6.35	218	53.82	TDS = 0.188 g/l
3R	59.58	59.47	48.86	10.61	10.72	1.70	5.5	IN	5.37	1.86	257	53.85	TDS = 0.222 g/l
MW-1 4	45.52	50.70	38.38	12.32	7.14	1.97	6.0	ΝΤ	5.81	5.19	223	53.30	TDS = 0.194 g/l
	37.42	36.20	29.86	6.34	7.56	1.01	3.0	NT	5.81	7.29	266	56.01	TDS = 0.222 g/l
	47.59	47.50	39.47	8.03	8.12	1.28	4.0	NT	5.50	6.88	183	53.41	TDS = 0.159 g/l
	3.46	4.00	0.75	3.25	2.71	0.52	2.0	NT	5.41	3.85	57	60.49	TDS = 0.045 g/l
	5.48	5.50	3.42	2.08	2.06	0.33	1.0	NT	5.37	3.16	176	65.99	TDS = 0.273 g/l
	3.41	5.00	0.46	4.54	2.95	0.73	2.5	NT	5.20	4.58	204	65.01	TDS = 0.067 g/l
SW-1	NA	NA	NA	NA	NA	NA	NA	NT	5.93	8.13	70	68.12	TDS = 0.50 g/l
SW-2	NA	NA	NA	NA	NA	NA	NA	NT	5.84	7.03	342	68.48	TDS = 0.244 g/l
SW-3	NA	NA	NA	NA	NA	NA	NA	NT	6.42	6.00	1313	73.87	TDS = 0.882 g/l
NOTES: N	VA = Noi	t Applicab	le; NE = N	NA = Not Applicable; NE = Not Established; NT = Not Taken	ed; NT = N	Vot Taken							
Samples collected upon completion of purge requirements and stabilization of field parameters.	cted upo	n completi	on of purg	e requireme	nts and sta	bilization o	f field parar	neters.					
4	4	•	•										

1573 Main Brewster, N	1573 Main Street, P.O. Box 1743 Brewster, MA 02631	Box 1743		BEN	BENNETT LICENSED SITE PR	ENV	RONN ALS, ENVIR	BENNETT ENVIRONMENTAL ASSOCIATES, INC LICENSED SITE PROFESSIONALS, ENVIRONMENTAL SCIENTISTS, GEOLOGISTS, ENGINEERS	L ASS SCIENTISTS	OCIA'	TES, I ISTS, ENGIN	INC. NEERS		Phone: (508) 896-1706 Fax: (508) 896-5109
					M	MONITO	NITORING WELL		SAMPLING LOG	NG LC	Q	,		
Job Name:		me Cond	Windchime Condominiums	s			Date(s):	12/7/17 [12/21/17	12/21/17]		Time:	10:00 AM	Tide:	Į "Otw
Location:	90 Great	Neck Rc	90 Great Neck Road South, Mashpee	, Mashpe	e		Job Number:	er:	BEA99-2252	2252				
Sampler:	Cameror	Cameron Houdlette	tte				Measuring Point:	Point:	Ground Su	Ground Surface or T.O.C		TOC		
	, i													
Well Number	Elev. of reference point (feet)	l'otal Depth of Well (feet)	Depth to Water (feet)	Standing Water Height (feet)	Water Table Elevation (feet)	Static Volume (gallons)	Volume Purged (gallons)	(mdd) 101-1d NNH	Hq	Dissolved Oxygen (mg/L)	Conductivity	Temperature (F)	Comments:	ents:
B-2R	60.50	59.00	50.80	8.20	9.70	1.31	5.5	NT	5.23	5.95	248	53.3	TDS = 0.1495 a/1	
MW-3R	59.58	59.47	49.03	10.44	10.55	1.67	6.0	NT	5.48	1.84	171	53.2	TDS = 0.1378 g/l	
													b	
MW-1	45.52	50.70	37.62	13.08	7.90	2.09	3.0	NT	5.86	5.25	204	53.1	TDS = 0.1489 g/l	
MW-2	37.42	36.20	29.88	6.32	7.54	1.01	4.0	NT	6.05	6.13	302		TDS = 0.2132 g/l	
MW-4	47.59	47.50	39.58	7.92	8.01	1.27	4.0	NT	5.52	6.60	166		TDS = 0.1261 g/l	
PZ-IR	3.46	4.00	2.50	1.50	0.96	0.24	2.0	NT	6.54	4.15	82	1	TDS = 0.0507 e/l	
PZ-2R	5.48	5.50	3.25	2.25	2.23	0.36	2.0	NT	6.29	4.75	294		TDS = 0.2145 g/l	
PZ-3R	3.41	5.00	0.77	4.23	2.64	0.68	2.0	NT	6.89	4.55	73		TDS = 0.0455 g/I	
												-		
I-WS	NA	NA	NA	NA	NA	NA	NA	NA	6.52	6.21	293	47.3	TDS = 0.0722 g/l	
SW-2	NA	NA	NA	NA	NA	NA	NA	NA	6.62	7.40	241		TDS = 0.1911 g/	
SW-3	NA	NA	NA	NA	NA	NA	NA	NA	6.51	7.74	122	48.1	TDS = 0.3335 g/l	
NOTES:	NA = Not	Applicabl	e; NE = No	t Establish	NA = Not Applicable; NE = Not Established; NT = Not T	ot Taken								

APPENDIX C

	ĒR											-				
Contact:	PATRICIA GALLAGHER	MICHAEL MILLER	JAMES BURGESS	BRIAN FAIRBANK	LINDA BENEA	Kara Buzanoski	Board of Selectmen	ARTHUR MONTROND	JAMES BROWN	Joey Cupp	Marcia Good	DAVID MASTROIANNI	EDIE FUSCIONE	WILLIAM MACKEY	Paul MacDonald	
Ŭ	ΡA	Ŵ	Ϋ́	RB		Ka	B	AR	IAL	Joe	Ma	DA		NIL	Pau	
Applicant	OCEAN SPRAY CRANBERRIES, INC. 152 BRIDGE STREET MIDDLEBORO, MA 02346	1775 WASHINGTON STREET HOLDINGS, LLC c/o CW Capital Asset Management 2600 Michelson Drive, suite 1700 IRVINE, CA 92612	ORLEANS BREWSTER EASTHAM GWPD 29 OVERLAND WAYP.O. BOX 2773 ORLEANS, MA 02653	100000 JIMINY PEAK INC. 37 COREY ROAD HANCOCK, MA 01237	31400 TOWN & COUNTRY MOBILE HOMES, INC 216 SUMMER STREET KINGSTON, MA 02360	Nantucket Department of Public Works 188 Madaket Road Nantucket, MA 02554	TOWN OF NANTUCKET 188 MADAKET ROAD NANTUCKET, MA 02554	TOWN OF PLYMOUTH PUBLIC SCHOOLS 10 OAK STREET PLYMOUTH, MA 02360	do THE DOLBEN COMPANY 25 CORPORATE DRIVE/SUITE 210 BURLINGTON, MA 01803	PILOT TRAVEL CENTERS, LLC 5508 LONAS ROAD KNOXVILLE, TN 37909	Fuller Pond Condominium Trust 8 Meeting House Square Middleton, MA 01949	80000 WHITE CLIFFS COMMUNITY ASSOC. ONE EAST CLIFFS DRIVE PLYMOUTH, MA 02350	GREAT ROAD CONDO. ASSOCIATION 380 C GREAT ROAD ACTON, MA 01718	WINDCHIME POINT CONDOMINIUM TRUST CO MERCANTILE PROPERTY MGM;PO BOX 790 BUZZARDS BAY, MA 02532	30000 CARVER HICHSCHOOL SOUTH MEADOW ROAD CARVER, MA 02330	Page 3 of 23
Flow	75000	85000	45000	10000	31400	580000	220000	40000	48970	37000	48000	80000	27720	40000	3000	
Project Name / location	OCEAN SPRAY CRANBERRIES 60 FEDERAL ROAD	HANOVER MALL WWTF 1775 WASHINGTON ST	TRI-TOWN SEPTAGE 29 OVERLAND WAY	JIMINY PEAK COREY ROAD	TOWN & COUNTRY MOBILE HOMES, INC SUMMER STREET	SURFSIDE WWTP SOUTHSHORE ROAD	SIASCONSET WWTP 1 LOW BEACH ROAD	PLYMOUTH SOUTH HIGHSCHOOL 490 LONG POND ROAD	SUMMER HILL CONDO. SUMMER ST	PILOT TRAVEL CENTER 400 HAYNES STREET, ROUTE 15	FULLER POND VILLAGE STONY BROOK LANE	WHITE CLIFFS CONDO. STATE ROAD	GREAT ROAD CONDOMINIUMS GREAT ROAD	WINDCHIME POINT GREAT NECK ROAD	CARVER HIGH WWTF SOUTH MEADOW ROAD	
Permit Expires: Reg Town	8/25/2018 SE CARVER	8/29/2018 SE HANOVER	12/20/2016 SE ORLEANS	12/5/2012 W HANCOCK	6/3/2017 SE KINGSTON	6/15/2015 SE NANTUCKET	9/7/2006 SE NANTUCKET	3/19/2018 SE PLYMOUTH	2/17/2018 SE PLYMOUTH	12/17/2016 CE STURBRIDGE	6/2/2018 NE MIDDLETON	10/15/2018 SE PLYMOUTH	11/25/2009 11/25/2018 CE ACTON	4/10/2016 SE MASHPEE	11/30/1997 SE CARVER	
Permit Issued	08/25/2009	08/29/2013	12/20/2007	12/05/2003	06/03/2008	06/15/2006	09/07/2001	03/19/2009	02/17/2009	12/17/2007	06/02/2009	10/15/2013	1/25/2009	04/10/2007	11/30/1992	
I Per	179 (184 (187 1	188	191 0	200 0	201 0	221 0	226 0	249 1	250 0	258 1	259 1	263 0	265 1	

Groundwater Discharge Permit list

Per	Permit Issued	Permit Expires: Reg Town	Project Name / location	Flow	Applicant	Contact:
272	05/12/2006	5/12/2015 SE MASHPEE	SOUTHPORT ON CAPE COD RTE 151 AND OLD BARNSTABLE RD	172000	SOUTHPORT ON CAPE COD CONDO. A 42 MEADOW BROOK ROAD MASHPEE, MA 02649	
288	08/28/2006	8/28/2015 CE ACTON	ACORN PARK CONDO. TRUST OFF ACORN PARK DRIVE	39750	HEAD TRUSTEE ACORN PARK CONDO 5 PALMER LANE ACTON, MA 01720	JAMES RUSSELL
299	08/07/2006	8/7/2015 CE STOW	BOSE CORPORATION 40 OLD BOLTON ROAD	48000	BOSE CORPORATION THE MOUNTAIN FRAMINGHAM, MA 01701	Gary Christenson
304	02/28/2007	2/28/2016 SE PLYMOUTH	H OCEAN POINT CONDOS. TAYLOR AVE	3000	C/O BROOKS MANAGEMENT 1017 TURNPIKE STREET CANTON, MA 02021	DAVID AXBERG
305	03/15/2011	3/15/2020 SE YARMOUTH	TH MAYFLOWER PLACE 579 BUCK ISLAND ROAD	25000	25000 West Yarmouth Property I, LLC c/o Aviv Reit, Inc 303 West Madison Street, suite 2400 Chicago, IL 60606	Steven J Insoft, President
306	07/14/2009	7/14/2018 SE MASHPEE	E MASHPEE COMMONS GREAT NECK ROAD	180000	180000 MASHPEE COMMONS LTD PRTNSHP P.O. BOX 1530 MASHPEE, MA 02649	DOUG STORRS
307	07/21/2008	7/21/2017 SE YARMOUTH	TH KING'S WAY CONDOMINIUM 10 KING'S CIRCUIT	165000	165000 KING'S WAY TRUST 10 KING'S CIRCUIT YARMOUTHPORT, MA 02675	RICHARD OMUNDSEN
312		10/29/2007 10/29/2016 SE SEEKONK	C SHIVA, LLC 213 TAUNTON AVENUE	29000) JOHNSON & WALES UNIVERSITY 213 TAUNTON AVENUE SEEKONK, MA 02771	KATHY KAVANAGH
324	02/25/2009	1 2/25/2018 SE HARWICH	I SNOW INN 23 SNOW INN ROAD	80000	80000 WYCHMERE HOLDINGS CORP, TRUSTEE WYCHMERE SHORES CONDOMINIUM TRUST 23 SNOW INN ROAD HARWICH, MA 02645	
344	04/21/2009	4/21/2018 SE YARMOUTH	TH THIRWOOD PLACE 237 NORTH MAIN STREET	24000	D FLAX POND NOMINEE TRUST 20 NORTH MAIN STREET SOUTH YARMOUTH, MA 02664	GERALD STREET
350	02/10/2009	1 2/10/2018 W LANESBORO	RO BERKSHIRE MALL WWTF ROUTE 8 AND OLD STATE ROAD	70000	D BERKSHIRE MALL GROUP P.O. BOX 1-3 LANESBOROUGH, MA 01237	JOSEPH SCELSI
350	02/10/2009	2/10/2018 W LANESBORO	DRO BERKSHIRE MALL WWTF ROUTE 8 AND OLD STATE ROAD	7000(70000 U.S. Bank National Association	
357	05/15/2009	9 5/15/2018 SE HARWICH	4 CRANBERRY POINT @ HARWICH 111 HEADWATERS DRIVE	12800	D EPOCH SL VII, INC. 111 HEADWATERS DRIVE HARWICH, MA 02645	DAVID WISNIEWSKI
362	07/21/2008	3 7/21/2017 CE LUNENBURG	JRG LAKESHORE VIL/WOODLANDS ROYAL FERN DRIVE	12500	D C/O HODAN MANAGEMENT LTD P.O. BOX 8397 BOSTON, MA 02114	RANDALL SPEARE
363	03/27/2007	7 3/27/2016 SE BRIDGEWATER	VATER NICE N° CLEAN CAR WASH 812 BEDFORD STREET (RTE. 18)	1462	14625 NICE N CLEAN CAR WASH P.O. BOX 387 W BRIDGEWATER, MA 02379	MICHAEL DEEB
					Page 4 of 23	

Groundwater Discharge Permit list

Page 4 of 23

SMOST University of Massachusells Dartmouth The School for Marine Science and Technology Massachusetts Department of Environmental Protection

Massachusetts Estuaries Project

Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for Popponesset Bay, Mashpee and Barnstable, Massachusetts

Executive Summary

1. Background

This report presents the results generated from the implementation of the Massachusetts Estuaries Project's Linked Watershed-Embayment Approach to the Popponesset Bay System a coastal embayment within the Towns of Mashpee and Barnstable, Massachusetts. Analyses of the Popponesset Bay System was performed to assist the Towns with up-coming nitrogen management decisions associated with the Towns' current and future wastewater planning efforts, as well as wetland restoration, anadromous fish runs, shell fishery, open-space, and harbor maintenance programs. As part of the MEP approach, habitat assessment was conducted on the embayment based upon available water quality monitoring data, historical changes in eelgrass distribution, time-series water column oxygen measurements, and benthic community structure. Nitrogen loading thresholds for use as goals for watershed nitrogen management are the major product of the MEP effort. In this way, the MEP offers a sciencebased management approach to support the Towns of Mashpee and Barnstable resource planning and decision-making process. The primary products of this effort are: (1) a current quantitative assessment of the nutrient related health of the Popponesset Bay System, (2) Identification of all nitrogen sources (and their respective N loads) to Bay waters, (3) nitrogen threshold levels for maintaining Massachusetts Water Quality Standards within embayment waters, (4) analysis of watershed nitrogen loading reduction to achieve the N threshold concentrations in Bay waters, and (5) a functional calibrated and validated Linked Watershed-Embayment modeling tool that can be readily used for evaluation of nitrogen management alternatives (to be developed by the Towns) for the restoration of the Popponesset Bay System.

Wastewater Planning: As increasing numbers of people occupy coastal watersheds, the associated coastal waters receive increasing pollutant loads. Coastal embayments throughout the Commonwealth of Massachusetts (and along the U.S. eastern seaboard) are becoming nutrient enriched. The elevated nutrients levels are primarily related to the land use impacts associated with the increasing population within the coastal zone over the past half-century.

The regional effects of both nutrient loading and bacterial contamination span the spectrum from environmental to socio-economic impacts and have direct consequences to the culture, economy, and tax base of Massachusetts's coastal communities. The primary nutrient causing the increasing impairment of our coastal embayments is nitrogen, with its primary sources being wastewater disposal, and nonpoint source runoff that carries nitrogen (e.g. fertilizers) from a range of other sources. Nitrogen related water quality decline represents one of the most serious threats to the ecological health of the nearshore coastal waters. Coastal embayments, because of their shallow nature and large shoreline area, are generally the first coastal systems to show the effect of nutrient pollution from terrestrial sources.

In particular, the Popponesset Bay System within the Towns of Mashpee and Barnstable is at risk of eutrophication (over enrichment) from enhanced nitrogen loads entering through groundwater and surface water from its increasingly developed watersheds. Eutrophication is a process that occurs naturally and gradually over a period of tens or hundreds of years. However, human-related (anthropogenic) sources of nitrogen may be introduced into ecosystems at an accelerated rate that cannot be easily absorbed, resulting in a phenomenon known as cultural eutrophication. In both marine and freshwater systems, cultural eutrophication results in degraded water quality, adverse impacts to ecosystems, and limits on the use of water resources.

The Town of Mashpee has recognized the severity of the problem of eutrophication and the need for watershed nutrient management and is currently developing a Comprehensive Wastewater Management Plan, which it plans to rapidly implement. The Town of Barnstable has already completed and implemented wastewater planning in other regions of the Town not associated with Popponesset Bay. Both Towns have nutrient management activities related to their tidal embayments, which have been associated with the MEP effort in Popponesset Bay. These groups have recognized that a rigorous scientific approach yielding site-specific nitrogen loading targets was required for decision-making and alternatives analysis. The completion of this multi-step process has taken place under the programmatic umbrella of the Massachusetts Estuaries Project, which is a partnership effort between all MEP collaborators and the Towns. The modeling tools developed as part of this program provide the quantitative information necessary for the Towns' nutrient management groups to predict the impacts on water quality from a variety of proposed management scenarios.

Nitrogen Loading Thresholds and Watershed Nitrogen Management: Realizing the need for scientifically defensible management tools has resulted in a focus on determining the aquatic system's assimilative capacity for nitrogen. The highest-level approach is to directly link the watershed nitrogen inputs with embayment hydrodynamics to produce water quality results that can be validated by water quality monitoring programs. This approach when linked to state-of-the-art habitat assessments yields accurate determination of the "allowable N concentration increase" or "threshold nitrogen concentration". These determined nitrogen concentrations are then directly relatable to the watershed nitrogen loading, which also accounts for the spatial distribution of the nitrogen sources, not just the total load. As such, changes in nitrogen load from differing parts of the embayment watershed can be evaluated relative to the degree to which those load changes drive embayment water column nitrogen concentrations toward the "threshold" for the embayment system. To increase certainty, the "Linked" Model is independently calibrated and validated for each embayment.

Massachusetts Estuaries Project Approach: The Massachusetts Department of Environmental Protection (DEP), the University of Massachusetts – Dartmouth School of Marine Science and Technology (SMAST), and others including the Cape Cod Commission (CCC)

have undertaken the task of providing a quantitative tool to communities throughout southeastern Massachusetts (the Linked Watershed-Embayment Management Model) for nutrient management in their coastal embayment systems. Ultimately, use of the Linked Watershed-Embayment Management Model tool by municipalities in the region results in effective screening of nitrogen reduction approaches and eventual restoration and protection of valuable coastal resources. The MEP provides technical guidance in support of policies on nitrogen loading to embayments, wastewater management decisions, and establishment of nitrogen Total Maximum Dally Loads (TMDLs). A TMDL represents the greatest amount of a pollutant that a waterbody can accept and still meet water quality standards for protecting public health and maintaining the designated beneficial uses of those waters for drinking, swimming, recreation and fishing. The MEP modeling approach assesses available options for meeting selected nitrogen goals that are protective of embayment health and achieve water quality standards.

The core of the Massachusetts Estuaries Project analytical method is the Linked Watershed-Embayment Management Modeling Approach, which links watershed inputs with embayment circulation and nitrogen characteristics.

The Linked Model builds on well-accepted basic watershed nitrogen loading approaches such as those used in the Buzzards Bay Project, the CCC models, and other relevant models. However, the Linked Model differs from other nitrogen management models in that it:

- requires site-specific measurements within each watershed and embayment;
- uses realistic "best-estimates" of nitrogen loads from each land-use (as opposed to loads with built-in "safety factors" like Title 5 design loads);
- spatially distributes the watershed nitrogen loading to the embayment;
- accounts for nitrogen attenuation during transport to the embayment;
- includes a 2D or 3D embayment circulation model depending on embayment structure;
- accounts for basin structure, tidal variations, and dispersion within the embayment;
- Includes nitrogen regenerated within the embayment;
- is validated by both independent hydrodynamic, nitrogen concentration, and ecological data:
- is calibrated and validated with field data prior to generation of "what if" scenarlos.

The Linked Model Approach's greatest assets are its ability to be clearly calibrated and validated, and its utility as a management tool for testing "what if" scenarios for evaluating watershed nitrogen management options.

For a comprehensive description of the Linked Model, please refer to the *Full Report: Nitrogen Modeling to Support Watershed Management: Comparison of Approaches and Sensitivity Analysis*, available for download at <u>http://www.state.ma.us/dep/smero/smero/smero.htm</u>. A more basic discussion of the Linked Model is also provided in Appendix F of the *Massachusetts Estuaries Project Embayment Restoration Guidance for Implementation Strategies*, available for download at <u>http://www.state.ma.us/dep/smero/smero/smero.htm</u>. The Linked Model suggests which management solutions will adequately protect or restore embayment water quality by enabling towns to test specific management scenarios and weigh the resulting water quality impact against the cost of that approach. In addition to the management scenarios modeled for this report, the Linked Model can be used to evaluate additional management scenarios and may be updated to reflect future changes in land-use with an embayment watershed or changing embayment characteristics. In addition, since the Model uses a holistic approach (the entire watershed, embayment and tidal source waters), it can be used to evaluate all projects as they

relate directly or indirectly to water quality conditions within its geographic boundaries. Unlike many approaches, the Linked Model accounts for nutrient sources, attenuation, and recycling and variations in tidal hydrodynamics and accommodates the spatial distribution of these processes. For an overview of several management scenarios that may be employed to restore embayment water quality, see *Massachusetts Estuaries Project Embayment Restoration* - *Guidance for Implementation Strategies*, available for download at http://www.state.ma.us/dep/smerp/smerp.htm.

Application of MEP Approach: The Linked Model was applied to the Popponesset Bay embayment system using site-specific data collected by the MEP and water quality data from the Popponesset Bay Water Quality Monitoring Program (see Chapter 2). Evaluation of upland nitrogen loading was conducted by the MEP, data was provided by the Town of Mashpee Planning Department and Town of Barnstable, and watershed boundaries delineated by USGS. This land-use data was used to determine watershed nitrogen loads within Popponesset Bay and its sub-embayments (current and build-out loads are summarized in Table IV-3). Water quality within each sub-embayment is the integration of nitrogen loads with the site-specific estuarine circulation. Therefore, water quality modeling of these tidally influenced estuaries included a thorough evaluation of the hydrodynamics of the estuarine system. Estuarine hydrodynamics control a variety of coastal processes including tidal flushing, pollutant dispersion, tidal currents, sedimentation, erosion, and water levels. Once the hydrodynamics of the system was quantified, transport of nitrogen was evaluated from tidal current information developed by the numerical models.

A two-dimensional depth-averaged hydrodynamic model based upon the tidal currents and water elevations was employed for the Popponesset Bay embayment system. Once the hydrodynamic properties of the estuarine system was computed, two-dimensional water quality model simulations were used to predict the dispersion of the nitrogen at current loading rates. Using standard dispersion relationships for estuarine systems of this type, the water quality model and the hydrodynamic model was then integrated in order to generate estimates regarding the spread of total nitrogen from the site-specific hydrodynamic properties. The distributions of nitrogen loads from watershed sources were determined from land-use analysis while nitrogen entering Mashpee's coastal embayment was quantified by direct measurement of stream nutrient concentrations and freshwater flow, predominantly groundwater, in streams discharging directly to the embayment. Boundary nutrient concentrations in Nantucket Sound source waters were taken from water quality monitoring data. Measurements of current salinity distributions throughout the estuarine waters of Popponesset Bay were used to calibrate the water quality model, with validation using measured nitrogen concentrations (under existing loading conditions). The underlying hydrodynamic model was calibrated and validated independently using water elevations measured in time series throughout the embayment.

MEP Nitrogen Thresholds Analysis: The threshold nitrogen level for an embayment represents the average water column concentration of nitrogen that will support the habitat quality being sought. The water column nitrogen level is ultimately controlled by the watershed nitrogen load and the nitrogen concentration in the inflowing tidal waters (boundary condition). The water column nitrogen concentration is modified by the extent of sediment regeneration. Threshold nitrogen levels for the embayment systems in this study were developed to restore or maintain SA waters or high habitat quality. High habitat quality was defined as supportive of eelgrass and infaunal communities. Dissolved oxygen and chlorophyll a were also considered in the assessment.

The tidally averaged total nitrogen thresholds derived in Section VIII-2 of this report were used to adjust the calibrated constituent transport model developed in Section V of this report. Watershed nitrogen loads were sequentially lowered, using reductions in septic effluent discharges only, until the nitrogen levels reached the threshold levels in each sentinel system within the embayment of interest. Water quality modeling results help to analyze whether a nutrient reduction approach will be effective in meeting a nutrient threshold for a specific embayment. However, the approach for any specific embayment discussed in this report serves as only one manner of achieving the selected threshold level for the sentinel sub-embayment within the estuarine system. The specific examples presented herein do not represent the only method for achieving this goal. It is certain that a more targeted nitrogen reduction program that incorporates more localized wastewater treatment and use of natural attenuation processes will result in the most cost-effective plan for restoring the Popponesset Bay embayment.

The Massachusetts Estuaries Project's thresholds analysis, as presented in this technical report, provides the site-specific nitrogen reduction guidelines for nitrogen management of the Popponesset Bay embayment in the Towns of Mashpee and Barnstable. Future water quality modeling scenarios should be run which incorporate the spectrum of strategies that result in nitrogen loading reduction to the embayment. The MEP analysis has initially focused upon nitrogen loads from on-site septic systems as a test of the potential for achieving the level of total nitrogen reduction for restoration of each embayment system. The concept was that since septic system and are more manageable than other of the nitrogen sources, the ability to achieve needed reductions through this source is a good gauge of the feasibility for restoration of these systems.

2. Problem Assessment (Current Conditions)

Habitat assessments were conducted on each sub-embayment to Popponesset Bay based upon available water quality monitoring data, historical changes in eelgrass distribution, time-series water column oxygen measurements, and benthic community structure. The Popponesset Bay System and its sub-embayments (Pinquickset Cove, Ockway Bay, Shoestring Bay, Mashpee River, Popponesset Bay central basin) showed variations in habitat quality, both between sub-embayments and along the longitudinal axis of the larger sub-embayments such as Shoestring Bay. In general, sub-embayments show declining habitat quality moving from the inlet to the inland-most tidal reach. This trend is seen in both the nitrogen levels (highest inland), eelgrass distribution, infaunal community stress indicators and community properties, as well as summer dissolved oxygen and chlorophyll a records. The following is a brief synopsis of the present habitat quality within each of the sub-embayments. The underlying quantitative data is presented on nitrogen (Section VII.3), oxygen and chlorophyll a (Section VII.2), eelgrass (Section VII.3), and benthic infauna (Section VII.4).

Combining the dissolved oxygen and chlorophyll a data yields a clear pattern of nutrient related habitat quality (based on these parameters only). At present, the central basin of Popponesset Bay supports relatively healthy habitat conditions, with consistently high bottom water dissolved oxygen and only modest phytoplankton blooms during summer. In contrast, the other regions of the System have moderate to high levels of nitrogen related impairment. Shoestring Bay shows both periodic oxygen declines and significant phytoplankton blooms, while Ockway Bay has similar oxygen declines, but apparently less phytoplankton bloomss. Farther along the gradient in nutrient enrichment is the estuarine region of the Mashpee River, which has extreme oxygen excursions and night-time oxygen depletion on a consistent basis and significant phytoplankton blooms. The major issue with the Mashpee River is the extent to which its structure as a salt marsh system ameliorates the impact of these water quality features. However, even as a salt marsh these levels of chlorophyll a and oxygen excursion indicate a moderate level of impairment. Based upon the dissolved oxygen and chlorophyll data the ranking of the Popponesset Bay System components is as follows:

- Popponesset Bay Central Basin -- high quality
- Popponesset Bay upper/confluence, Shoestring & Ockway Bays
 --significantly impaired
- Mashpee River
 - -- significantly impaired to degraded (relative to embayments) -- moderately to significantly impaired (relative to salt marshes)

At present, the Popponesset Bay System does not support eelgrass. In addition, to the DEP mapping, this has been confirmed during the various MEP surveys for infauna and sediment sampling and the moored instrument studies. The current lack of eelgrass is expected, given the high chlorophyll a and low dissolved oxygen levels and the watercolumn nitrogen concentrations within this system. However, it appears that a substantial area of the central basin did support an extensive eelgrass bed in 1951. In addition, there were smaller beds within the upper region of the main basin, at the mouth to Shoestring Bay. The spatial distribution of these beds is consistent with the pattern of nitrogen related habitat quality, which is currently observed within the System. However, the 1951 nitrogen levels would have been much lower than present levels given the difference in projected watershed nitrogen loading from 1951 versus 2003 population. It appears that as the Bay became nutrient enriched, that the Popponesset Bay basin could no longer support eelgrass. However, it is likely that if nitrogen loading were to decrease that eelgrass could first be restored in the lower portion of the main basin and with further reductions, be restored to the 1951 pattern.

It is significant that eelgrass was not detected Shoestring Bay and Ockway Bay in the 1951 data. It appears that these sub-embayments are not supportive of this type of habitat. Given the structure of these sub-embayments and their sediment types, it appears that they are natural depositional basins and may not be conducive to supporting rooted macrophytes. The lack of eelgrass in the Mashpee River is consistent with its role as a salt marsh system, which drains completely at low tide in some regions and which is "naturally" organic rich. For these reasons, salt marshes typically do not support eelgrass beds within their main channels.

The Infauna Study indicated that all areas but the lower station within the central basin of Popponesset Bay are presently moderately to severely degraded (Table VII-5). Upper Ockway Bay was found to support the poorest infaunal communities within the System. This is based upon the very low number of species and individuals observed in the sediments of Ockway Bay. Although the 2 species that were found (compared to 31 in the central basin) were indicative of healthy conditions, the low numbers (20's compared to 400-500 typically) indicated that this system is not presently supporting a viable community. The Mashpee River sites supported a higher quality habitat related to its function as a riverine salt marsh. The stress indicator species present were dominated by Cyathura polita, which is tolerant of the natural salinity stress that helps to define to this marsh system. However, the total numbers of individuals and diversity was low, indicative of a significantly impaired resource, even as a salt marsh. Shoestring Bay and the uppermost portion of the Popponesset Bay central basin both showed a resource between moderate and significant impairment. The numbers of individuals was generally high (500-600 per 0.018 m²) representing a moderate number of species. Diversity was also moderate to high and distributed between indicators of healthy and stressed conditions (Table VII-6), again indicative of moderate impairment. In contrast the Lower Popponesset Bay station

supports a relatively healthy infaunal community, with nearly double the species of other sites and high numbers of individuals (~500 per 0.018 m²). The high diversity (H') and general eveness (E) are consistent with a healthy community. The indication of moderate impairment stems from the presence of stress indicator species. The overall results indicate a system capable of supporting diverse healthy communities in the region nearest the tidal inlet with most of the system having infaunal habitat that is significantly impaired under present nitrogen loading conditions.

3. Conclusions of the Analysis

The threshold nitrogen level for an embayment represents the average watercolumn concentration of nitrogen that will support the habitat quality being sought. The watercolumn nitrogen level is ultimately controlled by the integration of the watershed nitrogen load, the nitrogen concentration in the inflowing tidal waters (boundary condition) and dilution and flushing via tidal flows. The water column nitrogen concentration is modified by the extent of sediment regeneration and by direct atmospheric deposition.

Threshold nitrogen levels for each of the sub-embayment systems in this study were developed to restore or maintain SA waters or high habitat quality. In these systems, high habitat quality was defined as supportive of eelgrass and diverse benthic benthos animal communities. Dissolved oxygen and chlorophyll a were also considered in the assessment.

Watershed nitrogen loads (Tables ES-1 and ES-2) for the Towns of Mashpee and Barnstable Popponesset Bay embayment system was comprised primarily of wastewater nitrogen. Land-use and wastewater analysis found that generally about 75%-80% of the watershed nitrogen load to an embayment was from wastewater.

A major finding of the MEP is clearly not a single total nitrogen threshold that can be applied to Massachusetts' estuaries, based upon the results of the Popponesset Bay System and the Pleasant Bay and Nantucket Sound embayments associated with the Town of Chatham. This is almost certainly going to be true for the other embayments within the MEP area, as well.

The threshold nitrogen levels for the Popponesset Bay embayment system was determined as follows:

- The target nitrogen concentration for restoration of eelgrass in this system was determined to be 0.38 mg TN L⁻¹. The value stems from (1) the analysis of Stage Harbor, Chatham which also exchanges tidal water with Nantucket Sound and for which a MEP target has already been set), (2) analysis of nitrogen levels within the vestigial eelgrass bed in adjacent Waquoit Bay, near the inlet (measured TN of 0.395 mg N L⁻¹, tidally corrected <0.38 mg N L⁻¹), and (3) a similar analysis in West Falmouth Harbor. Threshold values relating to eelgrass restoration was based upon these other Cape Cod systems with similar nitrogen dynamics, since there are presently no remaining eelgrass beds within Popponesset Bay (or even adjacent Three Bays).
- The sentinel station was located within the upper region of the central basin to Popponesset Bay and the mouth of Shoestring Bay, at the uppermost eelgrass bed detected in the 1951 data. Under present loading conditions the sentinel station supports a measured nitrogen level at mid-ebb tide of 0.581 mg TN L⁻¹ and a tidally corrected average concentration of 0.451 mg TN L⁻¹. This location was selected as a

sentinel station because: (1) it was the upper extent of the eelgrass coverage in 1951, (2) restoration of nitrogen conditions supportive of eelgrass at this location will necessarily result in even higher quality conditions throughout the whole of the central basin, and (3) restoration of nitrogen concentrations at this site should result in conditions similar to 1951 within Shoestring and Ockway Bays. Shoestring Bay and Ockway Bay should then be supportive of high quality habitat for benthic infaunal communities

Based upon sequential reductions in watershed nitrogen loading in the analysis described in the Section VIII-3, the sentinel station achieved an average TN level of 0.371 mg L⁻¹, the mouth of Ockway Bay, 0.376 mg TN L⁻¹ and the whole of the Popponesset Bay basin <0.331 mg TN L⁻¹.

The data suggest that there is likely a range of total nitrogen which can support healthy infauna within this system. Since Shoestring and Ockway Bays did not support eelgrass in the 1951 data, evaluation was based upon benthic animal habitat.

- Based upon current conditions, the infaunal analysis (Chapter VII) coupled with the nitrogen data (measured and modeled), indicated that nitrogen levels on the order of 0.4 to 0.5 mg TN L-1 are supportive of high quality infauna habitat within the Popponesset Bay System.
- The results of the Linked Watershed-Embayment modeling indicated that when the nitrogen threshold level is attained at the sentinel station (Section VIII-3), TN levels in Shoestring and Ockway Bays are consistent with high quality infauna habitat; upper to lower Shoestring Bay, 0.522 to 0.412 mg TN L⁻¹; upper Ockway Bay, 0.421 mg TN L⁻¹; and mid to lower Mashpee River, 0.525 to 0.422 mg TN L⁻¹.
- It appears that achieving the nitrogen target at the sentinel station will be restorative of eelgrass habitat throughout the Popponesset Bay central basin and restorative of infaunal habitat throughout Shoestring and Ockway Bays and the lower portion of the Mashpee River.

It is important to note that the analysis of future nitrogen loading to the Popponesset Bay Estuarine system focuses upon additional shifts in land-use from forest/grasslands to residential and commercial development. However, the MEP analysis indicates that significant increases in nitrogen loading can occur under present land-uses, due to shifts in occupancy, shifts from seasonal to year-round useage and increasing use of fertilizers (presently less than half of the parcels use lawn fertilizers). Therefore, watershed-estuarine nitrogen management must include management approaches to prevent increased nitrogen loading from both shifts in landuses (new sources) and from loading increases of current land-uses. The overarching conclusion of the MEP analysis of the Popponesset Bay Estuarine System is that restoration will necessitate a reduction in the present (2002) nitrogen inputs and management options to negate additional future nitrogen inputs.

Table ES-1. Existi	ing total and	erth-embour								
nitroç Mash River	nitrogen concentrations, and sentinel system threshold nitrogen concentrations. Loads to estuarine waters of Mashpee River and Shoestring Bay include both upper watershed regions contributing to the major rivers (Mashpee River, Quaker Run)and groundwater dominated income concentrations.	ations, and id Shoestrin, ir, Quaker R	sentiner nuroge sentinel sy g Bay inclu un)and arou	in loads to /stem_thre de_both_up	on the estuarine mutrogen loads to the estuarine waters of ons, and sentinel system threshold nitrogen concent Shoestring Bay include both upper watershed regions o Quaker Run)and groundwater dominated regions	Ons, and sentinent nitrogen loads to the estuarine waters of the Popponesset Bay System, observed ons, and sentinel system threshold nitrogen concentrations. Loads to estuarine waters of Shoestring Bay include both upper watershed regions contributing to the major rivers (Mashpee Quaker Run)and groundwater dominated regions contributing to the major rivers (Mashpee	the Poppor ations, L ₍ ontributing	iesset Ba oads to to the ma	onesset Bay System, observed Loads to estuarine waters of I to the major rivers (Mashpee	observed vaters of Mashpee
	Natural	1	Present		הוווומובח וה	ver regions.				1
Sub-embayments	(unaltered) Watershed Load ¹ (ltg/day)	Present Land Use Load ² (kg/day)	System Load (kg/dav)	Present WWTF Load ³ (Kg/day)	Present Watershed Load ⁴ (kg/day)	Present Atmospheric Deposition ⁵ (kg/dav)	Present Benthic Flux (ka/dav)	Present Total Load ⁶ (ko/dav)	Observed TN Conc. 7	Threshold TN Conc.
POPPONESSET BAY SYSTEM	AY SYSTEM								(1)0,)	(
Mashnee Biver ^a										
	00	8.01	19.51	0.15	27.67	0.66	11.47	39.80	0.958-	
Shoestring Bay ^a	1.85	7.54	23.00	0.00					0.627	ł
Ocioway Ray	100		00004	27.0	30.11	2.23	-11.85	21.15	0.690-	
	57°0	0.76	2.39	0	3.15	1.09	178	5	0.220	1
Pinguicket Cove	14	07.0					0	70 . 0	0.01/-	
Popponesset Bav	0.18	0.19	0.58	0	0.76	0.29	-0.33	0.72	0.597	1
	5	2	70.0	0	6.76	4.01	-5.04	1 70		
Svstem Total	7 68	00 17					r >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	07.0	-024.0 0 499	1
1 assumes enfire w	Vatarchod in 4	17.08	51,05	0.38	69.11	8.28	-3.97	73.42	4	0.380 ⁸
 ² composed of non-wastewater loads, e.g. fertilizer, runoff, present-day natural surfaces and atmospheric deposition to lakes ³ existing wastewater treatment facility discharges to groundwater ⁴ existing wastewater treatment facility discharges to groundwater ⁵ existing wastewater treatment facility discharges to groundwater ⁶ existing wastewater treatment facility discharges to groundwater ⁷ existing wastewater treatment facility discharges to groundwater ⁶ atmospheric deposition to embayment surfaces only ⁷ average of 1997 – 2003 data, ranges show the upper to lower regions (highest-lowest) of an sub-embayment. ⁸ Threshold for sentinel site located at the upper portion of Popponesset Bay and Mouth of Shoestring Bay (PBh), infaunal "target for Shoestring and Ockway Bays in the range of 0.400 – 0.500 were used to "chock" the order of the upper portion of Popponesset Bay and Mouth of Shoestring Bay (PBh), infaunal "target to chock" the order of the other regions (highest-lowest) at the other of the other regions of the other regions (how the other regions of 0.400 – 0.500 were used to "chock" the other regional of 0.400 – 0.500 were used to "chock" the other regional of the other regional of the other regional of the other regional othe	varersned is f areatment fer freatment bined preser bined preser bined preser bined preser bined preser areans arean areans arean areans arean a a arean a a arean a a a a a a a a a a a a a a a a a a		ested (i.e., no anthropog ads, e.g. fertilizer, runoff cility discharges to grour day natural surfaces, fer yment surface only U, fertilizer, runoff, septic nges show the upper to I dard deviations in Table I at the upper portion of F in the range of 0.400 – (ogenic sou off, presen fertilizer, ru ic system (o lower rec of Poppone	trces) tr-day natura Inoff, and se atmospheric gions (highes sset Bay an	ested (i.e., no anthropogenic sources) ads, e.g. fertilizer, runoff, present-day natural surfaces and atmospheric deposition to lakes cility discharges to groundwater day natural surfaces, fertilizer, runoff, and septic system loadings yment surface only I, fertilizer, runoff, septic system atmospheric deposition and benthic flux loadings afges show the upper to lower regions (highest-lowest) of an sub-embayment. I at the upper portion of Popponesset Bay and Mouth of Shoestring Bay (PBh), infaunal "targets" in the range of 0.400 – 0.500 were used to "chock" the optication of Popponesset Bay and Mouth of Shoestring Bay (PBh), infaunal "targets"	d atmosph oadings nd benthic an sub-emi hoestring E	eric depo eric depo flux loadi bayment.	sition to lak ngs , infaunal "	targets"
entry and Mashpee River include loads from rivers.	uy bay and N	lashpee Riv	er include lo	ads from ri	ivers.					/alue,

Executive Summary 9

.

.

Present Watershed Loads, Thresholds Loads, and the percent reductions necessary to achieve the Thresholds Loads for the Popponesset Bay embayment system, Towns of Mashpee and Barnstable, Massachusetts. Table ES-2.

						•
Embayment Systems and Sub- Embayments	Present Watershed Load (1)	Target Threshold Watershed Leoad (2)	Atmospheric Deposition	Benthic Flux (3)	TMBL-(4)	Percent watershed load reductions needed to
	(kg/day)	(kg/day)	(kg/day)	(kölday)	(kg/day)	achieve threshold loads
Popponesset Bay System						
Mashpee River	27.67	13.95	0.66	9.47	24.08	-49.5%
Shoestring Bay	30.77	19.71	2.23	-8.73	13.21	-35.9%
Ockway Bay	3.15	0.76	1.09	1.11	2.96	-75.9%
Pinquickset Cove	0.76	0.76	0.29	-0.33	0.72	0.0%
Popponesset Bay	6.76	2.77	4.01	-4.91	1.87	-59.0%
(1) Composed of combined present-day natural surfaces, fertilizer, runoff, and septic system	resent-day nat	ural surfaces,	fertilizer, runoff,	and septic:	svstem	
(2) Target threshold watershed load is the load from the watershed needed to meet the embayment threshold concentration identified in Table ES-1.	ed load is the lo Table ES-1.	ad from the w	atershed neede	d to meet th	e embayment	: threshold
(3) Projected future flux (present	ent rates redu	ced approxima	rates reduced approximately proportional to watershed load reductions).	l to watersh	ed load reduc	tions).
(4) Sum of target threshold water	atershed load,	atmospheric c	shed load, atmospheric deposition load, and benthic flux load.	and benthic	flux load.	
						Executive Summary 10

APPENDIX D

Mashpee Commons Waste-Water Treatment Facility Groundwater Discharge Permit #306-4

•, . --- .

BEA99-2252 Last Updated: 4/9/2018

EFFLUENT DISCHARGE MONITORING

	Ammonia	Nitrate	Nitrite	TKN	Total N	Avg. Flow
Oct-03	0.5	0.08	BRL	1.6	1.68	14,195
Nov-03	1.0	7.7	0.06	4.10	11.86	12,993
Dec-03	0.5	0.19	0.03	1.20	1.42	12,363
Jan-04	0.1	0.03	0.03	1.8	1.86	14,668
Feb-04	0.1	1.4	0.03	2.9	4.33	14,776
Mar-04	0.2	1.6	0.05	3.1	4.8	14,988
Apr-04	0.4	0.27	0.05	4.0	4.3	14,269
May-04	0.90	0.80	0.09	2.7	3.59	16,486
Jun-04	0.5	0.12	0.07	2.5	2.8	23,165
Jul-04	4.4	2.9	0.08	8.9	11.88	27,134
Aug-04	3.7	2.5	0.09	7.3	9.89	NA
Sep-04	0.1	0.1	0.1	1.5	1.5	NA
	NA	NA	NA	NA	NA	NA
Nov-04	1.70	1.6	0.26	6.9	8.76	NA
Dec-04	1.4	2.1	0.07	3.2	5.4	18,204
Jan-05	0.1	4.6	0.08	5.3	9.8	20,626
Feb-05	0.1	4.5	0.07	3.5	7.9	19,060
Mar-05	0.2	4.1	0.06	4.7	8.8	19,148
Apr-05	0.1	4.2	0.12	3.6	7.9	18,268
May-05	0.4	0.03	0.01	5.9	5.9	21,169
Jun-05	1.4	0.03	0.01	4.6	4.7	27,624
Jul-05	0.5	1.8	0.11	2.4	4.3	29,473
Aug-05	1.2	2.5	0.12	4.4	7.0	31,523
Sep-05	0.6	3.6	0.23	2.8	6.6	19,467
Oct-05	0.3	1.7	0.14	2.0	3.7	19,344
Nov-05	0.1	0.10	0.03	1.8	1.9	17,841
Dec-05	0.4	0.06	0.02	1.3	1.4	4,338
Jan-06	0.3	0.53	0.04	4.1	4.8	18,623
Feb-06	0.5	0.52	0.04	3	3.6	17,653
Mar-06	0.3	3.1	0.03	2.2	5.9	17,115
Apr-06	0.25	5.66	0.01	2.8	8.5	17,326
May-06	0.3	4.5	0.03	5.5	10.03	25,382
Jun-06	0.1	2.7	0.01	3.3	6	29,307
Jul-06	0.5	6.4	0.01	2.8	9.2	38,209
Aug-06	0.1	7.1	0.06	2.5	9.6	32,070
Sep-06	0.1	1.5	0.03	2	3.5	26,914
Oct-06		0.05	0.02	1.4	1.4	21,605
Nov-06		0.11	0.01	2	2.1	22,635
Dec-06	0.3	0.78	0.03	2.4	3.2	19,770

	Ammonia	Nitrate	Nitrite	TKN	Total N	Avg. Flow		
Jan-07		· · · ·	· .	<u>.</u>	• •		· ·	
Feb-07	0.2	2	0.03	8.9	11	16,750		
Mar-07	0.1	3.1	0.03	4	7.1	19,184		
Apr-07	0.1	2.2	0.05	2.6	4.8	13,460		
May-07	0.3	0.23	0.06	1.5	1.7	20,466		
Jun-07	0.1	0.001	0.003	1.5	1.5	26,570		
Jul-07	0.1	9.7	0.000	2.1	1.0			
	0.6					37,930		
Aug-07	0.0	2.1	0.03	1.6	3.73	37,513		
Sep-07								
Oct-07								
Nov-07	0.5	2.3	0.07	1.9	4.3	28,177		
Dec-07	0.7	0.41	0.06	1.7	2.17	28,272		
1an 09[0.00	0.44	0.00	0.44		04450		
Jan-08	0.39	0.11	0.03	3.11	3.3	24,452		
Feb-08	0.7	0.24	0.04	3.1	3.4	20,877		
Mar-08	0.1	0.27	0.04	3.5	3.81	16,130		
Apr-08	0.3	0.94	0.04	4	4.98	16,083		
May-08	0.9	0.78	0.07	7.7	8.55	16,966		
Jun-08	0.4	1.5	0.12	2.7	4.32	24,212		
Jul-08	0.1	0.87	0.07	3.5	4.44	29,487		
Aug-08	23	0.01	0.11	30	30.11	26,741		
Sep-08	0.6	0.08	0.04	2.8	2.92	19,452		
Oct-08	0.6	0.23	0.05	2.8	3.08	19,312		
Nov-08	0.3	1.8	0.05	2.4	4.25	14,419		
Dec-08	0.5	0.03	0.01	1.5	0.03	16,793		
		0.00	0.01	1.0	0.00	10,100		
Jan-09	1.26	0.8	0.03	4.6	5.24	15,313		
Feb-09	1.6	0.29	0.03	2.8	3.12	15,447		
Mar-09	1.7	4.6	0.03	0.7	5.33	14,303		
Apr-09						,		
May-09	0.1	0.41	0.05	2.6	3.06	16,779		
Jun-09	0.5	1.4	0.11	4.9	6.3	19,002		
Jul-09	1.2	3.6	0.1	4.9 3.4	7.1			
	1.2		0.1	3.4		23,958		
Aug-09		1.1			3.1	25,841		
Sep-09		0.01			0.25	20,137		
Oct-09		0.01			2.2	15,095		•
Nov-09		0.01			1	14,613		
Dec-09		0.01			1.6	12,151		
Jan-10]		
Feb-10		0.09			2.2	19.015		
						18,015		
Mar-10		0.12			0.15	17,747		
Apr-10		0.01			3	16,825		
May-10		0.01			2	19,867		
Jun-10		0.01			1	24,640		
Jul-10		2			3	31,753		
Aug-10		0.01			2	25,561		
Sep-10		0.01			0.1	24,781		
Oct-10		0			1	24,079		
		0.31		-	2	22,162	· · · · · · · ·	
Nov-10		0.31				// 10/ 1		

p --

	Ammonia	Nitrate	Nitrite	TKN	Total N	Avg. Flow
 Jan-11	· · · · · · ·	0.57			4.67	19,125
Feb-11		0.07			1	16,883
Mar-11		0.73			3	20,651
Apr-11		2.2			4	22,455
May-11		0.47			3	20,865
 Jun-11		0.07			1.4	25,867
Jul-11		0.33			2.4	35,123
Aug-11		2.3			3.9	32,315
Sep-11		0.76			5.1	26,812
Oct-11		0.74			2.1	20,371
Nov-11		0.2			2.6	22,715
Dec-11		1.2			2.9	21,042
Dec-11		1.2				
Jan-12	<u></u>	0.2	0.005	1.8	2	19,441
Feb-12		0.54	0.005	1.9	2.44	16,589
Mar-12		2.3	0.005	2.1	4.4	18,966
Apr-12		1.2	0.005	1.6	2.8	22,208
May-12		2.6	0.005	2.3	4.9	28,877
Jun-12		2.6	0.005	2.1	4.7	29,919
Jul-12		0.08	0.005	2.1	2.18	39,296
Aug-12		0.07	0.005	1.2	1.27	32,862
Sep-12		0.005	0.005	1.3	1.3	25,854
Oct-12		2.6	0.005	1.4	4	21,012
Nov-12		1.2	0.005	1.2	2.4	22,704
Dec-12		2.7	0.005	1.8	4.5	20,670
Inn 42		3.9	0.005	1.8	5.7	20,742
Jan-13			0.005	1.9	2.72	20,189
Feb-13		0.82		1.6	3.9	19,711
Mar-13		2.3	0.005		3.9	21,528
Apr-13		2.2	0.005	1.7	3.8	24,827
May-13		1.8	0.005	2		27,971
Jun-13		1	0.005	2.1	3.1	
Jul-13		3.2	0.025	2.5	5.7	35,676
Aug-13		0.44	0.025	2	2.44	34,787
Sep-13		0.23	0.025	1.6	1.83	25,027
Oct-13		0.71	0.025	2.1	2.81	24,532
Nov-13		0.94	0.025	1.7	2.64	18,211
Dec-13		1.1	0.025	1.5	2.6	17,848
Jan-14		1.3	0.025	1.5	2.8	15,459
Feb-14		4.8	0.025	4.1	8.9	21,194
Mar-14		2.5	0.025	4.6	7.1	20,066
Apr-14		0.06	0.025	47	47.06	18,893
May-14		0.025	0.025	14	14	23,476
		5,3	0.025	1	6.3	35,638
Jun-14		5.5	0.025	1.1	6.2	37,757
Jul-14		5.1 3.7	0.025	1.1	4.8	42,772
Aug-14				1.1	4.4	33,686
Sep-14		3.4	0.025	0.94	2.14	27,478
Oct-14		1.2	0.025			32,989
Nov-14		3.7	0.025	1.2	4.9	
Dec-14		1.9	0.025	0.74	2.64	34,421

	Ammonia	Nitrate	Nitrite	TKN	Total N	Avg. Flow
Jan-15		5.6	0.025	0.73	6.33	32,450
Feb-15		4.1	0.025	1.2	5.3	25,862
Mar-15		1.7	0.025	1.1	2.8	31,941
Apr-15		3.3	0.025	1.6	4.9	31,947
May-15		3.3	0.025	1.5	4.8	33,530
Jun-15		2.6	0.025	1	3.6	31,843
Jul-15		3	0.025	0.93	3.93	38,000
Aug-15		4.2	0.025	1.1	5.3	41,157
Sep-15		2.4	0.025	0.86	3.26	32,576
Oct-15		2.5	0.1	0.78	3.28	33,527
Nov-15		3.2	0.1	1.3	4.5	34,706
Dec-15		2.1	0.1	1	3.1	32,948
-						
Jan-16		1.1	0.1	0.98	2.08	30,757
Feb-16		0.96	0.125	1.9	2.86	28,537
Mar-16		0.5	0.125	1.3	1.8	28,088
Apr-16		0.44	0.125	0.74	1.18	32,191
May-16		0.39	0.125	1.1	1.49	35,379
Jun-16		1.6	0.125	0.95	2.55	38,255
Jul-16		1.1	0.125	0.93	2.03	50,066
Aug-16		2.8	0.125	0.95	3.75	51,243
Sep-16		1.2	0.125	1	2.2	45,517
Oct-16		1	0.125	0.89	1.89	41,489
Nov-16		0.69	0.125	0.89	1.58	37,863
Dec-16		0.98	0.28	2.14	2.14	43,324
· · F						
Jan-17		0.125	0.125	0.84	0.84	39,885
Feb-17		1	0.125	0.84	1.84	43,599
Mar-17		0.125	0.125	0.83	0.83	39,455
Apr-17		1.3	0.125	1.2	2.5	40,313
May-17		1.1	0.125	0.81	1.91	36,156
Jun-17		0.99	0.125	1	1.99	41,918
Jul-17		0.28	0.125	0.84	1.12	56,938
Aug-17		2.2	0.125	0.95	3.15	50,461
Sep-17		1.5	0.125	1.1	2,6	43,657
Oct-17		0.78	0.125	1.5	2.28	38,762
Nov-17		2.4			3.8	35,760
Dec-17						

Notes:

1. NT = not tested 2. NA = not available

3. Blue indicates value reported as below reporting limit, listed as half of reporting limit.

4. Green highlight indicates data not available at the Mashpee Board of Health

Windchime Point Condominiums Waste-Water Treatment Facilit	y
Groundwater Discharge Permit #263-3	•

EFFLUENT DISCHARGE MONITORING

	Ammonia	Nitrate	Nitrite	TKN	Total N	Total Phos Avg. Flow
10/24/2003	1.68	2.33	0.01	3.64	5.97	NA
11/25/2003	0.56	1.84	0.01	2.24	4.08	NA
12/11/2003	0.25	6.54	0.01	1.40	7.94	NA
	0.20	0.01				
1/15/2004	1.12	4.56	0.01	3.08	7.64	NA
2/24/2004	1.40	3.59	0.01	2.80	6.39	NA
3/19/2004	0.56	4.66	0.01	3.08	7.74	NA
4/27/2004	7.28	0.68	0.01	11.7	12.40	NA
5/26/2004	2.80	0.84	0.01	5.04	5.88	NA
6/24/2004	2.52	0.46	0.01	4.48	4.94	NA
7/28/2004	1.12	4.33	0.01	3.36	7.69	NA
8/26/2004	1.68	0.30	0.01	2.80	3.10	NA
9/28/2004	1.96	1.84	0.01	3.64	5.48	NA
10/22/2004	1.68	1.94	0.01	2.24	4.18	NA
11/23/2004	1.12	1.46	0.01	1.96	3.42	NA
12/22/2004	1.40	1.31	0.01	2.80	4.11	10,332
1/30/2005	1.12	3.42	0.01	1.40	4.82	9,011
2/18/2005	1.12	2.44	0.01	2.80	5.24	8,751
3/24/2005	1.68	1.77	0.01	3.08	4.85	8,877
4/27/2005	0.25	1.68	0.01	3.64	5.32	8,568
5/18/2005	2.80	0.56	0.01	3.92	4.48	10,078
6/30/2005	1.40	0.025	0.01	5.04	5.04	11,031
7/21/2005	3.08	0.025	0.01	6.72	6.72	14,170
9/1/2005	4.76	0.20	0.01	7.84	8.04	11,625
9/28/2005	0.56	5.38	0.840	3.64	9.86	10,177
10/18/2005	0.25	8.40	0.460	3.64	12.50	10,842
11/18/2005	1.4	21.40	0.340	3.08	24.80	8,850
11/30/2005	NT	2.17	0.150	1.68	4.00	A/A
12/22/2005	0.84	7.02	0.120	4.20	11.30	10,940
-						
1/26/2006	1.12	4.88	0.130	3.64	8.65	3,121
2/16/2006	0.25	5.22	0.175	3.36	8.76	8,661
3/23/2006	0.25	7.76	0.200	4.76	12.80	
4/27/2006	2.24	1.66	0.01	6.72	8.40	
5/31/2006	3.92	1.58	0.01	8.68	10.30	
6/29/2006	4.2	0.025	0.01	9.52	9.50	
7/27/2006	2.8	0.43	0.01	7.28	7.70	
8/31/2006	4.2	4.20	0.300	6.72	11.20	
9/25/2006	1.96	2.38	0.210	5.32	7.90	
10/24/2006	3.1	10.40	0.01	5.04	15.40	
11/21/2006	2.2	7.30	0.165	5.2	12.70	
12/19/2006	2.8	5.10	0.085	5.8	11.00	

	Ammonia	Nitrate	Nitrite	TKN	Total N	Total Phos	Avg. Flow
1/30/2007	1.8	9.09	0.155	3.90	13.20	7.37	
2/15/2007	2.4	2.88	0.235	4.50	7.60	7.53	
3/27/2007	2	2.34	0.01	3.80	6.10	6.17	
4/24/2007	2.7	4.95	0.01	3.40	8.40	4.6	
5/22/2007	2.7	4.70	0.175	5.00	9.90	8.8	
6/28/2007	3.1	0.025	0.140	4.48	4.60	9.2	
7/19/2007	6	1.330	0.450	10.20	11.90	9.77	
8/30/2007	3.8	0.025	0.915	7.56	8.50	8.08	
9/26/2007	3.4	1.66	0.74	6.86	9.30	6	
10/31/2007	1.4	6.03	0.33	2.5	8.80	6.16	
11/21/2007	1.1	.3.42	0.01	2.8	6.20	8,3	
12/27/2007	1.26	7.44	0.01	6.2	13.60	5.55	
			0.01	0.2	13.00	0.00	
1/31/2008	0.6	0.74	0.01	3.6	4.30	5.93	16,944
2/26/2008	0.98	3.72	0.01	5.2	8.90	6.77	16,155
3/20/2008	1.3	0.56	0.01	5.3	5.90	7	15,705
4/1/2008	1.5	0.62	0.01	4.8	5.40	, 7.12	17,260
5/20/2008	2.5	4.58	0.01	6.3	10.90	9.83	20,150
6/24/2008	3.4	4.02	0.735	8.4	13.10	7.83	23,575
7/24/2008	2.8	0.025	0.01	6.4	6.40	8.53	26,584
8/26/2008	1.4	1.9	1.08	4.5	7.50	11.7	
9/27/2008	1.8	2.16	0.835	4.62	7.60	7.73	25,686
10/23/2008	0.7	1.32	0.000	3.08			20,959
11/26/2008	0.7	0.63	0.01		4.40	8.81	18,594
12/16/2008	0.98	13.1		3.36	4.00	6.7	15,944
12/10/2000L	0.30	10.1	0.01	3.08	16.20	7.47	16,408
1/19/2009	1.26	0.80	0.01	4.90	5.70	6.41	14,996
2/16/2009		2.37	0.01	4.90	7.30	7.67	14,392
3/23/2009		1.46	0.065	3.36	5.00	6.8	13,299
4/15/2009		13.90	0.090	4.62	18.60	8.4	15,371
5/26/2009		8.84	0.270	5.74	14.80	7.38	
6/24/2009		5.42	0.250	1.12	6.70	8.8	16,538
7/27/2009		8.30	0.120	9.38	17.80		20,192
8/27/2009		8.83	0.120	9.38 4.20	13.20	9.43	23,294
9/30/2009		4.70	0.175			7.87	25,297
10/28/2009				2.66	7.60	10.4	20,083
11/23/2009		1.47 0.88	0.205	2.38	4.10	10	18,565
12/16/2009			0.110	3.22	4.20	7.65	15,699
		1.42	0.125	3.92	5.40	6.16	17,735
1/26/2010		7.30	0.01	3.50	10.80	6.95	15 940
2/23/2010		1.10	0.01	3.50 4.90	6.00		15,848
3/23/2010		9.50	0.01			10.6	13,627
4/27/2010		9.50 0.75		6.58	16.30	6.67	14,172
5/26/2010			0.01	8.40	9.20	6.55	14,618
6/1/2010		0.025	0.01	21.70	21.70	7.73	13,942
		1.76	0.190	9.10	11.10	7.2	15,793
7/27/2010		3.63	0.158	7.00	10.80	7.17	20,548
8/25/2010		1.64	0.129	12.30	14.00	8.6	18,042
9/28/2010		1.47	0.01	5.74	7.20	5.83	20,477
10/26/2010	· ·	2.32	0.090	4.90	7.30	6.83	
11/23/2010		2.23	0.119	6.16	8.50	7.47	13,991
12/21/2010		1.75	0.087	8.26	10.20	4.32	

	Ammonia	Nitrate	Nitrite	TKN	Total N	Total Phos	Avg. Flow			
1/25/2011	2211.1111.1	3.70	0.280	5.46	9.50	5.49			· · · · · · · · · · · · · · · · · · ·	or specified and also
2/22/2011		2.29	0.255	8.40	11.00	5.93	14,445			
3/24/2011		3.98	0.270	10.20	14.50	7.1	12,633			
4/19/2011		1.32	0.250	4.20	5.70	5.23	14,676			
5/17/2011		3.99	0.120	3.78	7.90	8.33	17,441			
6/1/2011		6.92	0.240	7.14	14.20	7.83	19,215			
7/27/2011		8.24	0.360	10.60	19.20	7.78	26,517			
8/25/2011		4.06	0.220	5.46	9.80	6.8	26,679			
9/13/2011		6.28	0.220	4.34	10.80	5.97	22,971			and the second se
10/21/2011		2.40	0.500	2.66	5.60	6.83	21,424			
11/29/2011		2.24	0.490	2.87	5.60	5.93	19,378			
12/22/2011		0.025	0.01	2.73	2.73	5.13	17,153			-
1/25/2012		3.53	0.220	2.23	5.90	5.62	16,382			
2/21/2012		4.60	0.220	4.30	9.10	5.53	14,879			
3/29/2012		4.02	0.310	3.00	7.30	5.8	15,408			
4/24/2012		1.65	0.340	4.80	6.70	5.73	15,641			-
5/30/2012		2.89	0.450	8.10	11.40	5.73	18,059			dere en el la de-
6/26/2012		1.00	0.210	8.00	9.20	. 7	20,102			
7/27/2012		0.49	0.010	8.10	8.60	8.02	21,570			
8/29/2012		0.68	0.260	3.90	4.90	6.69	19,562			- dependence of the second
9/26/2012		0.78	0.400	3.80	5.00	6.4	20,485			
10/16/2012		0.50	0.240	3.30	4.00	7.64	17,771			and a second second
11/28/2012		0.70	0.190	3.60	4.50	5.39	16,130			matrix con-
12/15/2012		1.23	0.260	3.40	4.90	5.12	18,026			
1/31/2013		0.81	0.190	3.70	4.70	5.46	14,189			and the second second
2/26/2013		3.65	0.240	7.50	11.30	4.57	14,518			
3/26/2013	1	4.50	0.160	7.50	12.20	4.9	14,493			
4/25/2013		1.08	0.010	7.30	8.40	5.67	17,274			
5/31/2013		3.52	0.170	7.20	10.90	6.66	18,035			
6/27/2013	1	1.25	0.260	9.60	11.10	7.78	19,929			
7/26/2013		1.41	0.370	11.10	12.90	7.73	22,694			
8/28/2013		0.51	0.010	6.90	7.40	5.19	24,653			-
9/27/2013		1.16	0.210	6.60	8.00	6.57				and and and and
10/31/2013		3.40	0.230	5.70	9.30	4.13	15,304			
11/27/2013		6.21	0.200	3.50	9.90	5.6	13,522			
12/20/2013	·	2.37	0.180	5.50	8.10	7.77	14,113			
101001	r	0.00	0.460	5.70	8.80	4.58	14,263			
1/31/2014		2.90	0.160 0.010	5.70 11.00	11.50	4.08	14,203			and the second se
2/27/2014		0.48			11.50 11.40	4.08 5.43	10,970			
3/28/2014		0.42	0.010	11.00 16.10	16.50	5.43 5.38	13,190			
4/29/2014		0.41	0.010		16.50	5.38 7.32	12,578			
5/29/2014		0.95	0.210	18.00			12,578			
6/27/2014		0.62	0.230	12.70	13.60 10.30	5.55	24,572			
7/31/2014		0.34	0.010	10.00	10.30	6.28 7				
8/29/2014		1.51	0.290	7.10	8.90	7	21,794 19 441			
9/30/2014	1	1.17	0.530	6.40	8.10	6 5 1 9	18,441			
10/30/2014		0.46	0.180	5.30	5.90	5.18	17,118			•
11/25/2014		3.31	0.260	7.70	11.30	6.01	14,500			
12/31/2014	·	0.56	0.100	11.70	12.40	5.64	15,153	l		

• • • •	Ammonia	Nitrate	Nitrite	TKN	Total N	Total Pho	s Avg. Flow
1/31/2015		3.86	0.085	4.00	7.90	5.45	14,585
2/22/2015		5.04	0.150	6.20	11.40	6.15	15,004
3/26/2015		0.39	0.150	10.20	10.70	5.05	10,229
4/28/2015		0.31	0.003	12.20	12.50	5.31	14,557
5/22/2015		4.93	0.210	7.10	12.20	5.13	16,050
6/23/2015		11.20	0.200	8.30	19.70	7.49	13,515
7/31/2015		2.68	0.200	18.30	21.30	7.56	14,814
8/25/2015		2.94	0.210	17.90	21.10	6.19	12,132
9/26/2015		3.50	0.210	11.50	15.20	6.11	9,602
10/23/2015		5.96	0.199	3.40	9.60	6.18	12,458
11/24/2015		8.41	0.219	5.90	14.50	5.33	13,594
12/18/2015		6.72	0.190	3.30	10.20	6.32	13,570
-							
1/27/2016		3.89	0.003	7.20	11.10	6.36	11,782
2/17/2016		4.11	0.003	6.80	10.60	5.88	12,092
3/25/2016		7.53	0.003	9.90	17.40	3.98	13,162
4/30/2016		3.86	0.130	8.30	12.30	5.33	12,675
5/1/2016							
6/30/2016		4.30	0.083	16.20	20.58	7.11	12,602
7/28/2016		7.00	0.076	12.80	19.88		15,248
8/30/2016		13.00	0.150	1.86	15.01		16,511
9/29/2016		6.30	0.075	5.47	11.85		11,998
10/27/2016		9.50	0.025	10.10	19.60		10,836
11/29/2016		3.80	0.025	8.56	12.36		10,991
12/29/2016		29.00	0.058	13.60	42.66		12,291
1/26/2017		12.00	0.053	6.98	19.03		10,794
2/23/2017		15.00	0.025	28.90	43.90		9,080
3/30/2017		19.00	0.025	8.00	27.00		8,825
4/27/2017		14.00	0.025	15.60	29.60		8,823
5/31/2017		10.00	0.300	7.75	18.05		11,974
6/29/2017		8.10	0.050	5.94	14.09	6.73	13,293
7/27/2017		11.00	0.025	8.22	19.22	•	15,514
8/30/2017		9.30	0.240	13.10	22.64		14,893
9/28/2017		9.90	0.052	2.44	12.39		12,382
10/26/2017		12.00	0.064	2.88	14.94		11,756
11/28/2017		10.00	0.093	34.20	44.29		13,169
12/28/2017		8.60	0.120	8.23	16.95		11,811

Notes:

1. NT = not tested

•

2. NA = not available

3. Blue indicates value reported as below reporting limit, listed as half of reporting limit.

UP GRADIENT MONITORING POINTS

					Monitoring	Well B-2 (destroved	1)				
	pН	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N	Total Phos.	
Nov-91	5.30	112		15.8	27.0	1.59		0.39	0.67	2.26	0.05	
Apr-99	5.92	116	6.4	22.1	29.3	0.73		2.09	2.79	3.52	0.103	
			50	0 11	Monitoring			Ammonio	TUN	Total N	Total Phoe	Ortho Phos.
N 04 E	рН	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	TOTALIN	TUTAL FILOS.	Offilo Filos.
Nov-91												
Apr-99 Mar-03												
Sep-03	5.8	78	8.5	9.1	17.3	0.63		0.25	0.25	0.63	0.767	
Dec-03	8.88	110	6.31	13.6	23.0	0.52	0.01	0.25	0.25	0.52	0.047	
Mar-04	5.76	109	7.42	17.9	33.7	0.67	0.002	0.25	0.25	0.67	0.025	
Jun-04	5.47	133	7.2	18.9	34.8	0.98	0.002	0.25	0.25	0.98	0.133	
Sep-04	5.48	127	6.45	18.5	30.1	1.47	0.002	0.25	0.25	1.47	0.600	
Dec-04	6.67	119	5.63	19.4	27.2	0.99	0.01	0.25	0.25	0.99	0.147	
Mar-05	6.85	104	7.05	15.2	29.8	1.05	0.002	0.25	0.25	1.05	0.223	
Jun-05	6.92	144	7.62	19.1	31.4	0.76	0.002	0.25	0.25	0.76 0.46	0.292 0.147	
Sep-05	6.96	121	7.86	17.6	36.5	0.46 0.67	0.002 0.002	0.25 0.25	0.25 0.25	0.48	0.147	
Dec-05	6.55	153	12.5 7.16	7.7 22.5	51.4 43.6	1.16	0.002	0.25	0.25	1.2	0.048	1
Mar-06 Jun-06	5.42 5.43	135 153	7.10	31	50.0	1.4	0.01	0.1	0.25	1.4	0.25	
Sep-06	0.40	100	1.51	29	35.0	0.72	0.01	0.1	0.25	0.8	0.25	
Dec-06	5.71	172	11.06	26	54.0	0.84	0.01	0.1	0.25	0.8	0.25	
Mar-07	5.9	144	11.01	30	47.0	1.1	0.02	0.1	0.25	1.1	0.60	
Jun-07	5.41	172	6.67	23.9	46.9	2.04	0.01	0.25	3.64	5.6	0.272	
Sep-07	6.07	151	7.39	15.9	37	1.28	0.01	0.25	0.25	1.3	0.027	
Dec-07	5.85	203	7.76	22.3	42.3	1.52	0.01	0.25	0.25	1.5	0.082	0.068
Mar-08	5.23	122	8.71	28.3	47.2	3.89	0.01	0.25	0.25	3.9	0.112	0.003
Jun-08	6.02	198	6.77	33	52	2.4	0.05	0.2	0.25	2.4	0.436	0.008 0.0025
Sep-08	5.33	294	7.25	40	64	1.9	0.01	0.0375	0.62	2.52 2.2	0.258 0.23	0.0025
Dec-08	5.94	142	7.01	27 31.5	40 54.9	1.7 1.97	0.025 0.01	0.0375 0.25	0.5 0.7	2.2	0.25	0.013
Mar-09	5.23	155 234	7.6 5.89	31.5 41	75	1.97	0.01	0.23	0.25	1.51	0.114	0.0025
Jun-09 Sep-09	5.48 5.79	234	4.4	38	55	1.3	0.025	0.104	0.15	1.3	0.078	0.0025
Dec-09	5.43	181	4.6	36	55	1.2	0.025	0.0375	0.15	1.2	0.165	0.008
Mar-10	5.63	199	4.24	27.5	56.8	1.21	0.01	0.25	0.25	1.2	0.300	0.005
Jun-10	5.31	180	6,56	36	46	0.99	0.025	0.0375	0.15	0.99	0.164	0.0025
Sep-10	6.26	111	7.1	38	57	0.9	0.025	0.0375	0.15	0.9	0.126	0.0025
Dec-10	5.96	151	8.55	40	53	1.2	0.025	0.077	0.15	1.2	0.08	0.0025
Apr-11	6.16	165	6.07	30	44	1.5	0.025	0.0375	0.15	1.5	0.062	0.0025
Jun-11	5.88	225		33	64.6	1.6	0.01	0.1	0.25	1.6	0.25	0.05
Sep-11	6.31	171	0.12	37	41	1.5	0.025	0.166	0.4	1.9	0.393	0.0025 0.0025
Dec-11	5.53	127	5.27	25	41	1.2	0.01	0.0375	0.48	1.68	0.32 0.005	0.0025
Mar-12	5.99	166	4.7	33 37	51 58	2 2	0.025 0.025	0.0375 0.0375	0.15 0.15	2.15 2	0.005	0.0025
Jun-12	5.38 5.72	188 185	9.33 5.35	37 41	56	1.9	0.025	0.0375	0.15	1.9	0.011	0.0025
Sep-12 Dec-12	5.72 5.86	166	3.9	39	69	2	0.025	0.408	0.36	2.36	0.005	0.0025
Mar-13	4.82	239	3.23	46	70	1.58	0.025	0.493	0.508	2.088	0.015	0.019
Jun-13	6.27	224	8.44	44	72	1.62	0.025	0.202	0.15	1.62	0.005	0.0025
Sep-13	4.73	170	5.18	36	53	1.13	0.01	0.083	1.01	2.14	0.005	0.0025
Dec-13		383	6.07	33	69	0.922	0.025	0.0375	0.15	0.922	0.005	0.0025
Mar-14	4.81	165	6.87	37	55	1.64	0.01	0.0375	0.15	1.64	0.005	0.006
Jun-14	4.63	287	5.88	59	89	2.21	0.025	0.0375	0.15	2.21	0.005	0.0025
Sep-14	3.01	241	6.27	52	91	1.6	0.025	0.134	0.391	1.991	0.005	0.0025
Dec-14	5.5	176	7.81	38	57	1.45	0.025	0.0375	0.15	1.45	0.005	0.005
Mar-15	4.62	155	5.03	37	53	1.08	0.025	0.0375	0.15	1.08	0.005 0.005	0.007 0.006
Jun-15	4.61	240	8.61	58	87 77	1.49	0.025	0.0375 0.0375	0.15 0.15	1.49 0.724	0.005	0.0025
Sep-15	4.23	210	6.68 6.5	42	77 73.4	0.724 0.892	0.025 0.025	0.0375	0.15	0.724	0.005	0.0025
Dec-15	4.46	379 185	6.5 9.91	43 40	73.4 63	1.02	0.025	0.0375	0.15	1.02	0.005	0.007
Mar-16 Jun-16	3.61 3.91	281	9.91 15.21	40 62	90	1.02	0.025	0.0373	0.662	1,862	0.005	0.007
Sep-16	5.17	287	5.99	30	46	0.748	0.025	0.0375	0.15	0.748	0.005	0.0025
Dec-16	5.05	157	8.12	39	53	1.27	0.025	0.0375	0.15	1.27	0.005	0.011
		•										•

Mar-17	5.1	137	6.37	39	53	1.34	0.025	0.0375	0.15	1.34	0.005	0.009
Jun-17	6.37	302	6.76	54.7	100	1.69	0.025	0.0375	0.375	2.065	0.005	0.014
Sep-17	5.5	218	6,35	44.2	71	0.873	0.025	0.0375	0.15	0.873	0.005	0.0025
Dec-17	5.35	248	5.66	41.6	70	0.763	0,025	0.154	0.15	0.763	0.005	0.0025
-						******						
					Monitoring	Well MW	-3 (Destroy	/ed)				
_	pН	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N	Total Phos.	Ortho Phos.
Nov-91	5.20	111		15.7	26.7	0.58		0.025	0.44	1.02	0.02	
Apr-99	5.61	57	3.1	13.0	13.0	0.32		0.61	1.31	1.63	0.031	
Mar-03	5.9	120		12.3	19.8	0.76		0.25	0.25	0.76	0.072	
Sep-03	6.6	107	6.1	14.8	24.0	0.54		0.25	0.25	0.54	0.55	
Dec-03	7.34	92	5.39	14.0	23.5	0.66	0.01	0.25	0.25	0.66	0.182	
Mar-04	5.68	90	6.21	15.2	28.4	0.68	0.002	0.25	0.25	0.68	0.025	
Jun-04	5.82	143	5.15	20.0	32.4	0.51	0.002	0.25	0.25	0.51	0.1	
Sep-04	5.24	101	5.98	14.9	24.5	1.31	0.002	0.25	0.25	1.31	0.233	
Dec-04	5.86	97 05	5.02	14.0	23.1	0.58	0.01	0.25	0.25	0.58	0.314	
Mar-05 Jun-05	6.15 6.21	95	5.19	14.3	30.9	0.63	0.002	0.25	0.25	0.63	0.112	
Sep-05	6.45	154 116	7.11	20.5 16	40.5	0.56	0.002	0.25	0.25	0.56	0.104	Í
Dec-05	6.06	129	7.43 11.1	17.7	29.8	0.71	0.002	0.25	0.25	0.71	0.135	
Mar-06	5.56	129	6.19	20.6	39.8 39.6	1.17 0.72	0.002 0.01	0.25 0.25	0.25	1.17	0.147	
Jun-06	5.58	133	7.81	20.0	35.0	1	0.01	0.25	0.25 0.25	0.7 1.1	0.373 0.25	
Sep-06	0.00	100	7.01	24	29	1.1	0.05	0.1	0.25	1.1	0.25	
Dec-06	5.48	138	9.82	21	34	1.7	0.01	0.1	0.25	1.8	0.25	
Mar-07	7.6	131	11.61	21	40	1.3	0.01	0.1	0.8	2	0.9	
Jun-07	5.65	228	6.24	26.9	55.2	1.22	0.01	0.25	0.56	1.8	0.17	
Sep-07	5.68	294	6.99	33.4	75.9	3.1	0.01	0.25	0.25	3.1	0.38	
Dec-07	7.42	235	6.94	36.6	70,8	3.18	0.01	0.25	0.25	3,2	0.116	0.055
Mar-08	5.49	175	9.8	17.6	35.3	1.81	0.01	0.25	0.25	1.8	0.06	0.003
Jun-08	6.8	191	5.2	32	53.0	1.6	0.05	0.2	0.25	1.6	0.601	0.008
Sep-08	5.5	300	7.89	53	77.0	2.5	0.01	0.0375	0.36	2.86	0.809	0.0025
Dec-08	5.99	172	5.1	26	50.0	1.9	0.025	0.0375	0.25	1.9	1.07	0.005
Mar-09	5.33	112	5.31	18.5	31.4	0.82	0.01	0.25	1.12	1.94	0.209	0.02
Jun-09	5.67	131	5.77	22	35.0	1.5	0.1	0.0375	0.25	1.6	0.616	0.0025
Sep-09	5.77	154	4.8	24	34	1.2	0.025	0.0375	0.15	1.2	0.389	0.0025
Dec-09	5.44	125	4.58	26	37	1.2	0.025	0.0375	0.15	1.2	0.378	0.01
Mar-10	6.04	266	6.33	24.5	49.2	1.25	0.01	0.25	0.25	1.2	0.487	0.018
Jun-10	5.63	197	6.61	36	61	0.95	0.025	0.082	0.15	0.95	0.538	0.0025
Sep-10	6.28	146	5.96	24	36	0.94	0.025	0.0375	0.15	0.94	0.328	0.0025
Dec-10	5.7	223	7	48	79	1.2	0.025	0.0375	0.15	1.2	0.229	0.009
Apr-11 Jun-11	5.64	205	5.69	37	64	1	0.025	0.0375	0.015	1	0.237	0.0025
Sep-11	5.67	159	0.4	27	41.3	1.4	0.01	0.1	0.25	1.4	0.25	0.05
Dec-11	6.61 5.52	156 114	0.1 4.64	23 22	34 38	1.1	0.025 0.01	0.25	0.33	1.43	0.592	0.0025
Mar-12	5.28	150	2.89	22	30 47	1.3 1.2	0.01	0.194 0.206	0.34 0.15	1.64 1.35	0.461 0.011	0.0025
Jun-12	4.33	128	4.57	25	41	1.2	0.025	0.200	0.15	1.35	0.011	0.00025 0.0025
Sep-12	6.58	134	5.55	24	35	1.4	0.025	0.0375	0.31	1.4	0.01	0.0025
Dec-12	5.91	111	2.53	23	39	1.4	0.025	0.0375	0.15	1.4	0.037	0.007
Mar-13	5.24	128	3.9	20	29	0.87	0.025	0.0375	0.15	0.87	0.01	0.007
Jun-13	6.34	193	6.41	38	63	1.31	0.025	0.0375	7.55	8.86	0.01	0.0025
Sep-13	4.85	166	3.13	34	52	1.25	0.01	0.0375	0.487	1.737	0.005	0.002.0
Dec-13	-	287	2.51	24	45	1.45	0.025	0.086	0.15	1.45	0.00	0.0025
Mar-14	4.95	149	7.01	28	51	1.51	0.01	0.082	0.318	1.828	0.005	0.006
Jun-14	4.92	244	10.86	50	78	1.45	0.025	0.0375	0.15	1.45	0.012	0.0025
Sep-14	3.8	143	6.02	28	47	1.32	0.025	0.0375	0.15	1.32	0.01	0.005
· Reason					Monitoring							J
				-								

						AAGU JAIAA-						
	pH	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N	Total Phos.	Ortho Phos.
Mar-15	5.08	130	3.59	24	44	1.13	0.025	0.0375	0.15	1.13	0.019	0.009
Jun-15	4.9	157	4.87	36	54	1.24	0.025	0.0375	0.15	1.24	0.018	0.008
Sep-15	5.28	188	5.11	37	66	1.21	0.025	0.0375	0.15	1.21	0.005	0.0025
Dec-15	4.96	338	3.36	37	58.9	1.2	0.025	0.0375	0.15	1.2	0.005	0.013
Mar-16	4.7	175	10.62	36	60	0.934	0.025	0.0375	0.15	0.934	0.005	0.009
Jun-16	4.38	241	6.53	46	79	1.01	0.025	0.0375	0.308	1.318	0.058	0.008
Sep-16	5.42	282	2.89	29	46	0.998	0.025	0.0375	0.15	0.998	0.01	0.0025
Dec-16	5.19	155	4	34	52	1.02	0.025	0.0375	0.15	1.02	0.005	0.014
Mar-17	5.32	210	3.06	35	58	0.594	0.025	0.0375	0.15	0.594	0.005	0.0045
Jun-17	6.42	225	1.06	42.1	69	0.91	0.025	0.0375	0.15	0.91	0.005	0.012
Sep-17	5.37	257	1.86	52	82	0.867	0.025	0.0375	0.521	1.388	0.005	0.0025
Dec-17	5.55	171	1.51	40.7	57	0.8	0.025	0.0375	0.15	0.8	0.005	0.01

Notes:

1. 1991 testing performed by N/F IEP, Inc.
 2. Blank cell = not tested / not applicable
 3. Blue indicates value reported as below reporting limit, listed as half of reporting limit.
 4. Green indicates value reported as less than (<), listed as half the reported value.

DOWN GRADIENT MONITORING POINTS

			•		Monitoring	Well MW-	1					
-	pН	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N	Total Phos.	Ortho Phos.
Nov-91	5.94	104		10.8	21.7	0.57		0.025	0.50	1.07	0.005	
Dec-91		70		40.0	40.0	0.40		0.05	0.44	0.00	0.000	
Apr-99 Mar-03	6.0	72	2.8	12.2	10.8	0.19 0.43		0.05 0.25	0.44	0.63	0.062	
Sep-03	5.8	87	5.4	10.9 12.6	17.0 19.4	0.43		0.25	0.25 0.25	0.43 0.59	0.047 0.917	
Dec-03	6.07	82	4.73	12.0	20.0	0.59	0.01	0.25	0.25	0.59	0.041	
Mar-04	5.62	91	3.88	13.6	25.6	0.91	0.002	0.25	0.25	0.91	0.041	
Jun-04	5.29	99	3.93	14.9	23.7	0.92	0.002	0.25	0.25	0.92	0.15	
Sep-04	5.46	99	4.30	13.8	23.6	1.03	0.002	0.25	0.25	1.03	0.083	1
Dec-04	5.42	81	3.95	13.5	20.6	0.46	0.01	0.25	0.25	0.46	0.083	
Mar-05	5.76	85	3.86	12.8	20.6	0.52	0.002	0.25	0.25	0.52	0.092	
Jun-05	6.46	102	6.69	14.6	19.9	0.66	0.002	0.25	0.25	0.66	0.144	
Sep-05	6.38	113	5.16	13.5	24.7	0.93	0.002	0.25	0.25	0.93	0.095	
Dec-05	5.5	77	5.45	9.3	18.4	0.6	0.002	0.25	0.25	0.6	0.152	
Mar-06	5.84	92	3.80	12	22.4	0.71	0.01	0.25	0.25	0.7	0.081	
Jun-06	5.82	95	4.23	15	22	0.74	0.01	0.1	0.25	0.8	0.25	
Sep-06	E 70	02	67	12	15	0.66	0.01	0.1	0.25	0.7	0.25	
Dec-06 Mar-07	5.72	93 148	6.7 6.04	13 16	24 24	0.68	0.01	0.1	0.25	0.7	0.25	
Mar-07 Jun-07	6.28 5.65	148 94	6.04 3.39	16	24 22.2	0.62 0.77	0.01 0.01	0.1 0.25	0.25 0.25	0.7 0.8	0.25 0.021	
Sep-07	5.66	94 117	3.39	8.6	22.2 19.1	0.77	0.01	0.25	0.25	0.6	0.021	
Dec-07	5.91	88	3.20	9.6	20	0.65	0.01	0.25	0.25	0.6	0.042	0.014
Mar-08	5.58	131	4.97	14.8	35.9	1.1	0.01	0.25	0.25	1.1	0.06	0.003
Jun-08	5.94	188	3.77	23	31	0.9	0.05	0.2	0.25	0.9	0.021	0.016
Sep-08	5.87	116	4.01	19	28	0.74	0.01	0.0375	0.15	0.74	0.021	0.012
Dec-08	6.45	311	3.63	14	26	0.75	0.025	0.0375	0.25	0.75	0.526	0.011
Mar-09	5.75	156	5.33	22.3	42.6	1.08	0.01	0.25	2.52	3.6	0.056	0.02
Jun-09	5.82	164	4.72	28	42	1.4	0.08	0.0375	0.25	1.48	0.371	0.01
Sep-09	5.96	151	4.11	23	40	0.78	0.025	0.103	0.15	0.78	1.04	0.006
Dec-09	6.04	132	5.24	21	-34	0.8	0.025	0.0375	0.15	0.8	0.259	0.015
Mar-10	5.85	240	3.98	25.5	72.5	1.56	0.01	0.25	0.25	1.6	0.227	0.005
Jun-10	5.88	167	7.28	29	49	1.5	0.025	0.0375	0.15	1.5	0.284	0.007
Sep-10	7.65	207	5.1	35	59	1.4	0.025	0.0375	0.15	1.4	0.967	0.0025
Dec-10	6.17	134	6.24	27 32	31 50	0.74 1	0.025	0.0375 0.084	0.15	0.74	0.196	0.014
Apr-11 Jun-11	4.87 5.38	172 172	0.6 4.55	32 29	49.2	1.8	0.025 0.01	0.064	0.15 0.7	1 2.5	0.882 1.4	0.0025 0.05
Sep-11	6.49	164	0.13	26	42	470	0.025	0.0375	1.5	470	0.337	0.035
Dec-11	5.88	128	3.87	25	38	0.89	0.020	0.0375	0.15	0.89	0.001	0.00
Mar-12	5.78	140	4.32	28	43	1.3	0.025	0.0375	0.15	1.45	0.005	0.007
Jun-12	5.86	136	6.37	27	33	0.85	0.025	0.0375	0.15	0.85	0,283	0.0025
Sep-12	6.86	118	5.81	23	28	0.84	0.025	0.0375	0.15	0.84	0.016	0.007
Dec-12	6.31	109	3.47	21	33	0.84	0.025	0.0375	0.15	0.84	0.067	0.01
Mar-13	5.26	141	7.91	26	41	1.07	0.025	0.0375	0.15	1.07	0.081	0.007
Jun-13	6.39	135	8.54	27	40	1.12	0.025	0.0375	0.15	1.12	0.01	0.007
Sep-13	5.47	164	5.71	31	46	1.47	0.01	0.0375	0.15	1.47	0.005	0.007
Dec-13	• •••	360	4.09	32	60	1.38	0.025	0.122	0.15	1.38	0.01	0.0025
Mar-14	6.46	163	5.31	30	54	1.33	0.01	0.0375	0.15	1.33	0.005	0.009
Jun-14 Son 14	5.36	314	7.77	56	98 48	1.22	0.025	0.0375	0.15	1.22	0.014	0.008
Sep-14 Dec-14	3.96 6	156 150	4.7 3.94	29 28	48 44	0.781 0.937	0.025 0.025	0.0375 0.0375	0.15 0.15	0.781 0.937	0.005	0.01 0.012
Mar-15	5.47	150	3.94 4.37	28 29	44 53	0.937	0.025	0.0375	0.15	0.937	0.005 0.005	0.012
Jun-15	5.69	176	4.37 5.57	39	58	1.24	0.025	0.0375	0.15	1.24	0.005	0.012
Sep-15	5.56	216	4.61	42	66	1.21	0.025	0.0375	0.15	1.24	0.005	0.0025
Dec-15	5.44	367	5.01	39	63.7	1.15	0.025	0.0375	0.15	1.15	0.005	0.015
Mar-16	4.86	178	6.38	36	57	0.873	0.025	0.873	0.15	0.873	0.005	0.007
Jun-16	4.31	185	8.56	34	53	0.92	0.025	0.0375	0.15	0.92	0.067	0.012
Sep-16	3.76	309	7.93	43	71	1.19	0.025	0.0375	0.15	1.19	0.005	0.008
Dec-16	5.61	161	4.32	35	54	0.822	0.025	0.0375	0.15	0.822	0.005	0.017
Mar-17	5.69	160	5.05	39	64	0.936	0.025	0.0375	0.15	0.936	0.005	0.009
Jun-17	6.26	244	4.65	44.6	72	0.948	0.025	0.0375	0.15	0.948	0.005	0.017
Sep-17	5.81	223	5.19	44.4	68	1.06	0.025	0.0375	0.15	1.06	0.005	0.011
Dec-17	5.86	204	4.30	39.2	62	1.13	0.025	0.0375	0.15	1.13	0.01	0.011

			÷			Well MW-2	•					
Nov 01	pН	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N	Total Phos.	Ortho Phos.
Nov-91 Dec-91	7.03	362	0.4	17.8	15.0	7.62		3.31	3.83	11.45	0.041	
Apr-99	7.00	002	0.4	11.0	10.0	1.02		0.01	0100		010 11	
Mar-03	5.8	302		23.7	25.7	10.1		0.25	0.25	10.1	0.087	
Sep-03	5.7	249	8.0	36	34.1	10.5		0.25	0.25	10.5	0.60	
Dec-03	6.22	249	4.73	13.5	29.5	6.74	0.01	0.25	0.25	6.74	0.085	
Mar-04	6.34	241	3.95	22.3	21.6	8.21	0.002	0.25	0.25	8.21	0.041	
Jun-04	5.84	231	3.41	25.1	24.9	11.6	0.002	0.25	0,56	12.2	0.1	
Sep-04	5.42	256	4.77	38	35.0	9.13	0.002	0.25	0.25	9.13	0.100	
Dec-04	5.53	204	3.95	30.5	22.0	7.30	0.01	0.25	0.25	7.3	0.111	
Mar-05	5.79	154	5.45	16.7	16.5	5.78	0.002	0.25	0.25	5.78	0.131	
Jun-05	6.22	175	9.12	19.4	18.4	5.44	0.002	0.25	0.25	5.44	0.096	
Sep-05	6.40	247	7.65	33.6	34.3	7.73	0.002	0.25	0.25	7.73	0.133	
Dec-05	5.70	454	3.6	33	39.8	10.20	0.067	14	14	24.3	0.070	
Маг-06	6.09	262	1.66	20.4	26.4	7.44	0.01	7	7	14.4	0.069	
Jun-06	6.08	261	2.31	15	25	5.0	0.02	8.2	8.1	13	0.25	
Sep-06				33	28	10.0	0.01	0.1	0.25	10	0.25	
Dec-06	5.71	325	4.62	33	35	7.1	0.01	0.1	0.25	7.1	0.25	
Mar-07	5.70	214	5.97	10	13	6.0	0.01	0.1	0.25	6	0.25	
Jun-07	5.38	121	5.28	7.5	13.6	4.56	0.01	0.25	0.25	4.6	0.004	
Sep-07	5.71	246	3.44	37.2	28.8	9.25	0.01	0.25	0.25	9.2	0.95	0.007
Dec-07	6.00	325	2.49	35.4	26.6	26.6	0.01	0.25	0.8	27.4	0.041	0.027
Mar-08	5.62	186	6.33	11.6	16.6	6.1	0.01	0.25 0.2	0.25 0.25	6.1 4	0.033 0.01	0.003 0.009
Jun-08	5.60	187	4.96	13	15	4	0.05	0.2			0.005	0.009
Sep-08	5.44	210	5.67	33	30 32	5.5	0.01 0.025	0.0375	0.15 0.25	5.5 5.9	0.005	0.0025
Dec-08	6.25	267	3.66	36		5.9 5.44		0.0375	0.25	5.44	0.084	0.0025
Mar-09	5.92	205	5.45	20.2 21	23.2 23	5.44 4.3	0.01 0.08	0.25	0.25	4.38	0.309	0.216
Jun-09	5.94	170 214	5.61 5.51	33	23	4.3	0.025	0.0375	0.25	4.9	0.303	0.281
Sep-09	6.09 5.63	214	5.51 4.14	20	20	4. 3 6.1	0.025	0.0375	0.15	6.1	0.623	0.359
Dec-09 Mar-10	5.67	178	4.52	20	22.9	4.13	0.025	0.25	0.25	4.1	1.27	0.907
Jun-10	6.05	175	7.02	14	24	2.6	0.025	0.0375	0.15	2.6	0.55	0.84
Sep-10	5.82	304	6.17	45	34	14	0.025	0.0375	0.13	14	0.841	0.872
Dec-10	5.96	240	6.55	41	32	7	0.025	0.0375	0.15	7	1.55	1.46
Apr-11	3.35	188	1.12	24	20	5.1	0.025	0.107	0.015	5.1	0.715	0.795
Jun-11	5.46	203	4.3	22	24.6	6.7	0.01	0.1	0.8	7.5	1.1	0.4
Sep-11	6.19	260	0.12	35	34	7.5	0.025	0.0375	0.38	7.88	1.2	0.75
Dec-11	5.73	186	3.78	26	28	7.6	0.01	0.0375	0.15	7.6	0.574	0.521
Mar-12	5.71	199	4.46	26	26	4.9	0.025	0.0375	0.15	4.9	1.05	0.982
Jun-12	5.87	183	12.35	24	27	4.1	0.025	0.0375	0.15	4.1	0.909	0.848
Sep-12	6.43	242	6.64	34	36	6.4	0.025	0.0375	0.15	6.4	0.01	1.12
Dec-12	6.26	218	5.36	35	43	8	0.025	0.0375	0.3	8	1.22	1.38
Mar-13	5.85	151	6.06	15	18	3,12	0.025	0.0375	0.15	3.12	1.02	1.18
Jun-13	6.22	192	10.95	25	35	5.57	0.025	0.0375	0.15	5.57	0.714	0.627
Sep-13	5.65	239	6.51	29	28	9	0.01	0.0375	0.15	9	0.819	0.788
Dec-13		574	3.31	33	42	9.32	0.025	0.0375	0.3	9.32	0.942	0.986
Mar-14	5.75	185	8.19	22	30	3,98	0.01	0.0375	0.15	3.98	0.936	0.917
Jun-14	5.54	253	10.98	42	45	5.6	0.025	0.0375	0.3	5.6	1.05	1.15
Sep-14	4.46	304	8.31	38	50	13.2	0.0025	0.0375	0.75	13.2	0.874	0.915
Dec-14	6.00	309	4.54	41	47	15	0.025	0.0375	0.15	15	0.834	0.882
Mar-15	5.72	233	8.79	29	42	5.34	0.025	0.0375	0.3	5.34	1.28	1.18
Jun-15	5.81	261	5.62	33	60	4.51	0.025	0.094	0.15	4.51	1.02	0.955
Sep-15	5.60	263	4.16	44	42	9.98	0.025	0.166	0.79	10.77	1.26	1.48
Dec-15	5.70	608	4.36	40	42.8	16.5	0.025	0.0375	0.75	16.5	0.874	0.887
Mar-16	5.50	221	9.5	25	36	5.25	0.025	0.0375	0.3	9.85	1.04	1.02
Jun-16	5.42	261	10.87	35	44	5,63	0.025	0.0375	0.3	5.63	1.6	1.39
Sep-16	4.25	267	8.37	34	42	11.6	0.025	0.075	0.3	11.6	1.42	1.4
Dec-16	5.79	283	6.61	45	46	16.9	0.025	0.0375	0.15	16.9	1.35	1.26
Mar-17	6.50	305	5.85	37	47	9.05	0.025	0.0375	0.3	9.05	1.43	1.41
Jun-17	6.42	225	8.12	26.4	34	6.52	0.025	0.0375	0.15	6.52	1.56	1.43
Sep-17	5.81	266	7.29	40	38	8.02	0.025	0.0375	0.15	8.02	1.56	1.48
Dec-17	6.1	302	5.39	47.5	34	14.7	0.025	0.0375	0.3	14.7	1.7	1.68

			50		Monitoring						÷	
	pH	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N		Ortho Phos.
Nov-91	5.32	111	F 0	13.8	23.0	2.65		0.69	0.78	3.43	0.005	
Dec-91	5.45	106	5.0	14.9	17.3	0,56		0.35	0.96	1.52	0.021	
Apr-99 Mar-03	5.9	107		12	20.1	0.48		0.25	0.25	0.25	0.042	
Sep-03	5.9 5.1	149	8.7	26.2	54.0	0.48		0.25	0.25	0.66	0.80	
Dec-03	5.86	130	7.19	20.2	30.0	0.00	0.01	0.25	0.25	0.00	0.031	
Mar-04	5.36	80	6.58	10.7	21.1	0.72	0.002	0.25	0.25	0.72	0.065	
Jun-04	4.87	87	7.2	12	18.9	0.59	0.002	0.25	0.25	0.59	0.005	
Sep-04	5.53	90	6.73	13.5	20.6	0.73	0.002	0.25	0.25	0.73	0.067	
Dec-04	5.28	99	7.60	15.3	29.3	0.86	0.01	0.25	0.25	0.86	0.067	
Mar-05	5.67	107	7.08	13.3	34.5	0.5	0.002	0.25	0.25	0.5	0.100	
Jun-05	6.22	86	8.70	11	17.9	0.51	0.002	0.25	0.25	0.51	0.070	
Sep-05	6.44	97	7.77	12.6	23.1	0.86	0.002	0.25	0.25	0.86	0.037	
Dec-05	5.36	95	9.28	11.3	21.3	0.89	0.002	0.25	0.25	0.89	0.139	
Mar-06	5.34	73	8.12	9.1	16.0	0.75	0.01	0.25	0.25	0,8	0.048	
Jun-06	5.26	156	8.27	19	30	1.3	0.01	0.1	0.25	1.3	0.25	
Sep-06				15	23	0.73	0.01	0.1	0.25	0.7	0.25	
Dec-06	5.26	108	11.01	15	32	1.1	0.01	0.1	0.25	1.1	0.25	
Mar-07	5.57	87	11.47	13	17	1.1	0.01	0.1	0.25	1.1	0.25	
Jun-07	5.05	81	7.5	8.3	18.1	0.84	0.01	0.25	0.7	1.5	0.013	
Sep-07	5.12	181	7.66	15.5	35.8	1.47	0.01	0.25	0.25	1.5	0.048	
Dec-07	5.43	122	7.95	23.1	22.2	2.66	0.01	0.25	0.25	2.7	0.034	0.014
Mar-08	5.7	156	9.25	29.5	30.2	2.73	0.01	0.25	0.25	2.7	0.042	0.008
Jun-08	5.41	151	6.62	20	29	1.1	0.05	0.2	0.25	1.1	0.005	0.0025
Sep-08	5.27	130	8.15	22	34	1	0.01	0.0375	0.15	1	0.005	0.0025
Dec-08	6.06	139	8.1	20	31	1.8	0.025	0.0375	0.25	1.8	0.563	0.0025
Mar-09	5.05	99	7.77	14.6	30.7	0.81	0.01	0.25	0.25	0.81	0.035	0.016
Jun-09	5.49	103	7.5	16	25	0.69	0.09	0.0375	0.25	0.78	0.537	0.0025
Sep-09	6.58	101	5.75	15	18	0.69	0.025	0.0375	0.15	0.69	0.37	0.0025
Dec-09	5.3	78	5.73	11	19	0.48	0.025	0.0375	0.15	0.48	0.5	0.0025
Mar-10	5.14	98	7.03	12	29.6	0.6	0.01	0.25	0.25	0.6	0.23	0.005
Jun-10	5.84	100 127	10.17 7.53	18 20	27 33	0.84	0.025 0.025	0.0375 0.0375	0.15 0.15	0.84 0.76	0.66 0.25	0.0025
Sep-10 Dec-10	5.81 5.77	82	9	20 14	33 18	0.76 0.52	0.025	0.0375	0.15	0.78	0.25	0.0025 0.005
Apr-11	4.8	85	9 1.1	14	21	0.52	0.025	0.0375	0.15	0.52	0.307	0.005
Jun-11	4.89	97	5.11	14	25.9	0.67	0.025	0.095	0.30	1.37	0.307	0.0023
Sep-11	6.03	184	0.12	23	41	1.2	0.025	0.0375	0.15	1.2	0.189	0.0025
Dec-11	5.29	96	5.19	17	31	0.85	0.01	0.0375	0.15	0.85	0.005	0.0025
Mar-12	4.98	101	7.14	17	30	0.9	0.025	0.0375	0.15	0.9	0.005	0.0025
Jun-12	4.95	127	12.81	22	37	1.1	0.025	0.0375	0.15	1.1	0.028	0.0025
Sep-12	6.34	133	6.61	26	36	1.2	0.025	0.0375	0.15	1.2	0.148	0.0025
Dec-12	5.92	112	5.67	22	39	0.92	0.025	0.0375	0.15	0.92	0.005	0.0025
Mar-13	5.1	112	7.65	19	29	0.738	0.025	0.0375	0.15	0.738	0.005	0.0025
Jun-13	6.06	118	10.62	22	37	0.879	0.025	0.0375	0.15	0.879	0.005	0.0025
Sep-13	4.91	130	6.82	22	34	0.826	0.01	0.0375	0.15	0.826	0.005	0.0025
Dec-13		304	6.54	24	46	0.959	0.025	0.0375	0.15	0.959	0.005	0.0025
Mar-14	4.89	153	10.91	29	51	1.32	0.01	0.0375	0.15	1.32	0.005	0.0025
Jun-14	4.95	168	15.45	30	51	1.1	0.025	0.0375	0.426	1.526	0.05	0.0025
Sep-14	3.8	199	10.21	37	66	1.35	0.025	0.0375	0.15	1.35	0.005	0.0025
Dec-14	6	141	9.26	28	42	0.849	0.025	0.137	0.15	0.849	0.005	0.006
Mar-15	5.05	133	7.93	24	46	0.649	0.025	0.0375	0.15	0.649	0.005	0.007
Jun-15	5.2	193	7.33	43	71	1.05	0.025	0.0375	0.15	1.05	0.005	0.006
Sep-15	4.98	181	7.17	34	59	0.864	0.025	0.0375	0.15	0.864	0.005	0.006
Dec-15	5.01	265	10.59	27	44.6	0.613	0.025	0.0375	0.15	0.613	0.005	0.007
Mar-16	4.47	145	13.36	26	48	0.649	0.025	0.129	0.15	0.649	0.005	0.0025
Jun-16	4.18	214	12	40	71	0.932	0.025	0.0375	0.15	0.932	0.011	0.006
Sep-16	4.14	272	9.4	38	59	0.984	0.025	0.0375	0.15	0.984	0.005	0.0025
Dec-16	5.2	186	9.7	40	68	0.864	0.025	0.0375	0.15	0.864	0.005	0.01
Mar-17	4.9	150	8.78	36	57	0.952	0.025	0.0375	0.15	0.952	0.005	0,005
Jun-17	6.27	219	8.97	42	70	0.905	0.025	0.0375	0.15	0.905	0.005	0.01
Sep-17	5.5	183	6.88	36.5	56 52	0.716	0.025	0.0375	0.15	0.716	0.005	0.0025
Dec-17	5.58	166	7.11	31.7	52	0.769	0.025	0.0375	0.15	0.769	0.005	0.0025

						Monitoring							
	N	<u>pH</u>	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N		Ortho Phos.
	Nov-91	5.07	166		17.8	19.7	7.70		0.025	0.46	8.14 12.75	0.05	
	Apr-99	5.8	55		19.2 4.4	16.0 7.8	8.22 0.025		4.18 0.25	4.53 0.25	0.25	0.04	
	Mar-03 Jun-06	5.46	389	6.1	73	110	1.3	0.05	0.25	0.25	1.3	0.25	
	Sep-06	0.40	209	0.1	10	15	0.05	0.03	0.1	4.3	4.3	6.1	
	Dec-06	5.65	63	5.39	12	12	0.1	0.03	0.1	1.7	1.8	2.2	
	Mar-07	5.79	45	9.79	4	5.8	0.05	0.02	0.1	3.6	3.7	4.1	
	Jun-07	5.32	42	4.66	3.6	4.8	0.025	0.01	0.25	0.98	1	0.0015	
	Sep-07	5.87	222	0.13	26.8	21.5	0.025	0.01	0.25	0.25	0.25	0.029	
	Dec-07	6.36	138	5.4	11.7	27.1	0.025	0.01	0.25	1	1	0.003	0.003
	Mar-08	5.97	115	6.34	12.4	21.7	0.31	0.01	0.25	0.25	0.25	0.02	0.003
	Jun-08	6.15	97	3.25	16	23	0.71	0.05	0.2	0.25	0.71	0.005	0.008
	Sep-08	6.02	202	2.54	48	42	0.14	0.01	0.08	0.15	0.14	0.005	0.006
	Dec-08	6.09	69	2.11	4.2	4.4	0.27	0.05	0.13	0.25	0.32	0.005	0.0025
	Mar-09	5.87	50	6.61	4.3	11.8	0.29	0.01	0.25	0.25	0.29	0.035	0.015
	Jun-09	5.73	36	2.58	3.3	6.2	0.29	0.07	0.0375	0.25	0.36	0.005	0.0025
	Sep-09	6.07	0.85	2.22	12	7.8	0.1	0.05	0.0375	0.15	0.15	0.005	0.0025
	Dec-09	5.66	36	3.49	3.3	3.3	0.44	0.025	0.0375	0.15	0.44	0.005	0.0025
	Mar-10	5.06	32	3.76	3	7.9	0.09	0.01	0.25	0.25	0.25	0.015	0.005
	Jun-10	4.78	30	3.41	2.9	4.7	0.3	0.025	0.0375	0.15	0.3	0.024	0.0025
	Sep-10	5.25	90	2.43	6.3	6.8	0.05	0.025	0.0375	0.15	0.225	0.01	0.0025
	Dec-10	5.31	44	3.7	4	5.1	0.14	0.025	0.0375	0.15	0.14	0.005	0.007
	Apr-11	4.25	41	5.35	4.8	9.2	0.11	0.025	0.0375	0.15	0.11	0.005	0.0025
	Jun-11	4.84	42	4.29	5	8.4	0.08	0.01	0.1	0.5	0.58	0.25 0.005	0.05 0.0025
	Sep-11	5.38	181	4.08	10	8.6	0.05 0.19	0.025 0.01	0.0375 0.0375	0.15 0.15	0.225 0.19	0.005	0.0025
	Dec-11 Mar-12	5.17 5.47	58 65	2.67 3.56	4.6 7.2	6.8 15	0.19	0.025	0.0375	0.15	0.15	0.005	0.0025
	Jun-12	5.47 4.43	89	5.76	14	23	0.36	0.025	0.0375	0.15	0.36	0.005	0.0025
	Sep-12	7.03	246	1.37	63	62	0.13	0.025	0.0375	0.15	0.13	1.94	0.0025
	Dec-12	6.31	201	2.19	48	62	0.4	0.025	0.0375	0.15	0.4	0.0005	0.0025
	Mar-13	5.95	132	6.51	6.6	12	0.132	0.025	0.0375	0.15	0.132	0.005	0.0025
	Jun-13	5.81	48	4.33	3.5	7.8	0.402	0.025	0.0375	0.15	0.402	0.005	0.0025
	Sep-13	5.36	82	0.45	5.3	9.9	0.05	0.01	0.0375	0.15	0.21	0.005	0.0025
	Dec-13		204	4.37	7.1	14	0.05	0.025	0.0375	0.15	0.225	0.005	0.0025
	Mar-14	5.43	68	8.09	12	14	0.205	0.01	0.0375	0.15	0.205	0.005	0.0025
						Plezomete	r PZ-1R						
			~	00	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N	Total Phos.	Orthe Dhee
		pH	Conductivity	DO				1111110					Unito Phos.
	Nov-91	6.13	156		17	31.3	0.14		3.6	3.70	3.84	0.005	Onno Phos.
	Apr-99			6.4						3.70 1.13			Onno Phos.
	Apr-99 Mar-03	6.13 7.58	156 306	6.4	17 44.5	31.3 60.4	0.14 1.57		3.6 1.13	1.13	3.84 2.7	0.005 0.123	Onno Phos.
	Apr-99 Mar-03 Sep-03	6.13 7.58 6.63	156 306 59	6.4 3.8	17 44.5 7	31.3 60.4 9.8	0.14 1.57 0.025		3.6 1.13 0.25	1.13 0.25	3.84 2.7 0.25	0.005 0.123 0.983	<u>Onno Phos.</u>
	Apr-99 Mar-03 Sep-03 Dec-03	6.13 7.58 6.63 6.34	156 306 59 56	6.4 3.8 3.19	17 44.5 7 8.9	31.3 60.4 9.8 13.5	0.14 1.57 0.025 0.025	0.01	3.6 1.13 0.25 0.25	1.13 0.25 0.25	3.84 2.7 0.25 0.25	0.005 0.123 0.983 0.036	<u>Onno Phos.</u>
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04	6.13 7.58 6.63 6.34 6.36	156 306 59 56 63	6.4 3.8 3.19 2.26	17 44.5 7 8.9 10.3	31.3 60.4 9.8 13.5 19.7	0.14 1.57 0.025 0.025 0.09	0.01 0.002	3.6 1.13 0.25 0.25 0.25	1.13 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09	Onno Phos.
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04	6.13 7.58 6.63 6.34 6.36 6.26	156 306 59 56 63 66	6.4 3.8 3.19 2.26 3.38	17 44.5 7 8.9 10.3 7.9	31.3 60.4 9.8 13.5 19.7 11.3	0.14 1.57 0.025 0.025 0.09 0.005	0.01 0.002 0.002	3.6 1.13 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04	6.13 7.58 6.63 6.34 6.36 6.26 6.46	156 306 59 56 63 66 51	6.4 3.8 3.19 2.26 3.38 1.85	17 44.5 7 8.9 10.3 7.9 6.5	31.3 60.4 9.8 13.5 19.7 11.3 8.9	0.14 1.57 0.025 0.025 0.09 0.005 0.005	0.01 0.002 0.002 0.002	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04	6.13 7.58 6.63 6.34 6.36 6.26 6.26 6.46 6.29	156 306 59 56 63 66 51 40	6.4 3.8 3.19 2.26 3.38 1.85 2.85	17 44.5 7 8.9 10.3 7.9 6.5 6.6	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.025	0.01 0.002 0.002 0.002 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05	6.13 7.58 6.63 6.34 6.36 6.26 6.46 6.29 6.37	156 306 59 56 63 66 51 40 38	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.025 0.005	0.01 0.002 0.002 0.002 0.01 0.002	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05	6.13 7.58 6.63 6.34 6.36 6.26 6.46 6.29 6.37 6.61	156 306 59 56 63 66 51 40 38 47	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.025 0.005 0.01	0.01 0.002 0.002 0.002 0.01 0.002 0.002	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05	6.13 7.58 6.63 6.34 6.36 6.26 6.46 6.29 6.37 6.61 6.49	156 306 59 56 63 66 51 40 38 47 77	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.025 0.005	0.01 0.002 0.002 0.002 0.01 0.002	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05	6.13 7.58 6.63 6.34 6.36 6.26 6.46 6.29 6.37 6.61 6.49 5.99	156 306 59 56 63 66 51 40 38 47	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.025 0.005 0.005 0.01 0.005	0.01 0.002 0.002 0.01 0.002 0.01 0.002 0.002	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05	6.13 7.58 6.63 6.34 6.36 6.26 6.46 6.29 6.37 6.61 6.49	156 306 59 56 63 66 51 40 38 47 77 41	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.005 0.005 0.01 0.005 0.005	0.01 0.002 0.002 0.002 0.01 0.002 0.002 0.002 0.002	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06	6.13 7.58 6.63 6.34 6.36 6.46 6.29 6.37 6.61 6.49 5.99 6.33	156 306 59 56 63 66 51 40 38 47 77 41 38	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.8 5.9	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7	0.14 1.57 0.025 0.025 0.09 0.005 0.004 0.01 0.0	0.01 0.002 0.002 0.01 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Jun-06	6.13 7.58 6.63 6.34 6.36 6.46 6.29 6.37 6.61 6.49 5.99 6.33	156 306 59 56 63 66 51 40 38 47 77 41 38	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9	0.14 1.57 0.025 0.09 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.01	0.01 0.002 0.002 0.01 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Mar-06 Jun-06 Sep-06	6.13 7.58 6.63 6.34 6.26 6.26 6.29 6.37 6.61 6.49 5.99 6.33 6.45	156 306 59 56 63 66 51 40 38 47 77 41 38 50	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.8 5.9 7 8	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7	0.14 1.57 0.025 0.025 0.09 0.005 0.004 0.01 0.0	0.01 0.002 0.002 0.01 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Jun-06 Sep-06 Dec-06	6.13 7.58 6.63 6.34 6.36 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.45	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71 8.25	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.8 5.9 7 8 8	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10	0.14 1.57 0.025 0.025 0.09 0.005	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25 0.126	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Sep-06 Dec-06 Mar-07 Jun-07 Sep-07	6.13 7.58 6.63 6.34 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.45 6.17 6.53	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.54 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 7 8 8 7 5.8 6.5	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 10.3 23.5	0.14 1.57 0.025 0.025 0.09 0.005 0.05 0.005	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25 0.126 0.283	
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07	6.13 7.58 6.63 6.34 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.17 6.53 5.99 6.09 6.02	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 7 5.8 6.5 39.5	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 10.3 23.5 50.7	0.14 1.57 0.025 0.025 0.09 0.005 0.001 0.005 0.005 0.001 0.005 0.0025 0.005 0.001 0.0025 0.005 0.001 0.0025 0.0025 0.005 0.001 0.0025 0.	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25 0.25 1.1 0.6 0.25 0.25 0.126 0.283 0.115	0.042
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Jun-06 Sep-06 Dec-06 Mar-07 Sep-07 Dec-07 Mar-08	6.13 7.58 6.63 6.34 6.36 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.45 6.17 6.53 5.99 6.09 6.02 5.53	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81 105	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62 1.93	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 7 8 8 7 5.8 6.5 39.5 44.7	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 10.3 23.5 50.7 36.8	0.14 1.57 0.025 0.025 0.09 0.005 0.0025 0.002	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.125 0.25 1.1 0.6 0.25 1.1 0.6 0.25 0.126 0.25 0.126 0.25 0.115 0.128	0.042 0.007
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Mar-06 Jun-06 Sep-06 Dec-06 Mar-07 Jun-07 Jun-07 Dec-07 Mar-08 Jun-08	6.13 7.58 6.63 6.34 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.17 6.53 5.99 6.02 5.53 6	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81 105 124	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62 1.93 2.09	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 7 5.8 6.5 39.5 39.5 44.7 19	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 10.3 23.5 50.7 36.8 33	0.14 1.57 0.025 0.025 0.09 0.005 0.025	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.125 0.25 1.1 0.6 0.25 1.1 0.6 0.25 0.126 0.283 0.115 0.128 0.608	0.042 0.007 0.008
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Jun-06 Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Mar-08 Jun-08 Sep-08	6.13 7.58 6.63 6.34 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.17 6.53 5.99 6.09 6.09 6.02 5.53 5.99 6.09 6.03	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81 105 124 81	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62 2.15 1.93 2.09 2.11	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 8 7 5.8 6.5 39.5 39.5 44.7 19 13	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 8.4 9 7 10 9 10.3 23.5 50.7 36.8 33 20	0.14 1.57 0.025 0.09 0.005 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.03 0.05 0.03 0.05	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25 0.126 0.283 0.115 0.128 0.608 0.273	0.042 0.007 0.008 0.0025
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Sep-05 Dec-05 Mar-06 Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Mar-08 Sep-08 Dec-08	6.13 7.58 6.63 6.34 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.17 6.53 5.99 6.09 6.02 5.53 6.03 6.03 5.81	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81 105 124 81 53	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62 2.15 1.53 2.62 2.11 2.71	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.5 5.8 5.9 7 8 8 7 8 8 7 5.8 6.5 39.5 39.5 44.7 19 13 6.8	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 8.4 9 7 10 9 10.3 23.5 50.7 36.8 33 20 11	0.14 1.57 0.025 0.025 0.09 0.005 0.025 0.05	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0.375	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25 0.126 0.283 0.115 0.128 0.283 0.115 0.128 0.283 0.115 0.283 0.115 0.283 0.1128 0.273 2.07	0.042 0.007 0.008 0.0025 0.005
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Mar-08 Jun-08 Sep-08 Dec-08 Mar-09	6.13 7.58 6.63 6.34 6.36 6.26 6.46 6.29 6.37 6.61 6.49 6.33 6.45 6.17 6.53 5.99 6.09 6.02 5.53 6.09 6.03 5.81 6.51	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81 105 124 81 53 40	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62 1.93 2.09 2.11 2.71 2.55	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 7 8 8 7 5.8 6.5 39.5 44.7 19 13 6.8 7.6	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 8.4 9 7 10.3 23.5 50.7 36.8 33 20 11 13.1	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.005 0.05 0.05 0.05 0.05 0.025 0.	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.01 0.	3.6 1.13 0.25 0	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.25 1.25 0.25 1.1 0.6 0.25 0.126 0.283 0.115 0.128 0.115 0.25 0.126 0.253 0.115 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	0.042 0.007 0.008 0.0025 0.005 0.033
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Jun-06 Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Mar-08 Jun-08 Sep-08 Mar-09 Jun-09	6.13 7.58 6.63 6.34 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.17 6.53 5.99 6.09 6.02 5.53 6 6.09 6.02 5.53 6 6.25 6.31 6.2	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81 105 124 81 53 40 53	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.5 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62 1.93 2.09 2.11 2.71 2.55 2.87	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 7 5.8 6.5 39.5 44.7 19 13 6.8 7.6 8	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 8.4 9 7 10 9 10.3 23.5 50.7 36.8 33 20 11 13.1 10	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.005 0.025	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25 0.126 0.283 0.115 0.128 0.283 0.115 0.128 0.273 2.07 0.527 2.68	0.042 0.007 0.008 0.005 0.005 0.033 0.007
	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Jun-06 Sep-06 Dec-06 Mar-07 Sep-07 Dec-07 Mar-08 Jun-08 Sep-08 Mar-09 Jun-09 Sep-09	6.13 7.58 6.63 6.34 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.45 6.17 6.53 5.99 6.02 5.53 6 6.02 5.53 6 6.02 5.53 6 6.03 5.81 6.2 6.31	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81 105 124 81 53 40 53 53 53	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.3 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62 1.93 2.09 2.11 2.71 2.55 2.87 3.14	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 7 8 8 7 5.8 6.5 39.5 44.7 19 13 6.8 7.6 8 7.9	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 8.4 9 7 10 9 10.3 23.5 50.7 36.8 33 20 11 13.1 10 7.8	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.03 0.025 0.025 0.04 0.025 0.025 0.04 0.05 0.025 0.025 0.025 0.05 0.17 0.05 0.05 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.15 0.17 0.15 0	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.01 0.	3.6 1.13 0.25 0.375 0.097	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25 1.1 0.6 0.25 0.126 0.283 0.115 0.283 0.115 0.283 0.115 0.283 0.115 0.283 0.115 0.283 0.115 0.283 0.112 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	0.042 0.007 0.008 0.0025 0.005 0.003 0.007 0.022
• • • • • • • • • • • • • • • • • • •	Apr-99 Mar-03 Sep-03 Dec-03 Mar-04 Jun-04 Sep-04 Dec-04 Mar-05 Jun-05 Sep-05 Dec-05 Mar-06 Jun-06 Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Mar-08 Jun-08 Sep-08 Mar-09 Jun-09	6.13 7.58 6.63 6.34 6.26 6.46 6.29 6.37 6.61 6.49 5.99 6.33 6.45 6.17 6.53 5.99 6.09 6.02 5.53 6 6.09 6.02 5.53 6 6.25 6.31 6.2	156 306 59 56 63 66 51 40 38 47 77 41 38 50 42 43 61 86 81 105 124 81 53 40 53	6.4 3.8 3.19 2.26 3.38 1.85 2.85 3.5 4.55 3.54 4.75 6.95 6.71 8.25 6.52 2.15 1.53 2.62 1.93 2.09 2.11 2.71 2.55 2.87	17 44.5 7 8.9 10.3 7.9 6.5 6.6 5.2 6.3 6.5 5.8 5.9 7 8 8 7 5.8 6.5 39.5 44.7 19 13 6.8 7.6 8	31.3 60.4 9.8 13.5 19.7 11.3 8.9 12.4 8.6 8.4 16.5 9 8.4 9 7 10 9 8.4 9 7 10 9 10.3 23.5 50.7 36.8 33 20 11 13.1 10	0.14 1.57 0.025 0.025 0.09 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.005 0.025	0.01 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.01	3.6 1.13 0.25 0	1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	3.84 2.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.005 0.123 0.983 0.036 0.09 0.133 0.150 0.254 0.255 0.363 0.107 0.121 0.125 0.25 1.1 0.6 0.25 0.126 0.283 0.115 0.128 0.283 0.115 0.128 0.273 2.07 0.527 2.68	0.042 0.007 0.008 0.005 0.005 0.033 0.007

Jun-10	6.2	58	4.22	7.2	8.4	0.05	0.025	0.0375	0.48	0.48	3.09	0.024
Sep-10	5.99	69	3.68	7.7	8.5	0.05	0.025	0.0375	1.2	1.2	2.21	0.014
Dec-10	6.31	48	6.9	7.9	8.8	0.05	0.025	0.0375	0.86	0.86	0.641	0.019
Apr-11	5.51	61	0.12	8	11	0.16	0.025	0.092	2.2	2.36	1.3	0.012
Jun-11	5.5	57	7.9	7	11.4	0.04	0.01	0.1	1.9	1.94	1.1	0.05
Sep-11	6.81	55	0.08	7.5	9.6	0.36	0.025	0.0375	1.1	1.46	0.415	0.008
Dec-11	5.64	39	4.1	6.9	9.4	0.05	0.01	0.0375	0.15	0.21	0.172	0.008
Mar-12	5.3	130	4.56	7.1	9.5	0.05	0.025	0.0375	0.15	0.225	0.581	0.005
Jun-12	4.71	44	6.45	7.4	9.5	0.05	0.025	0.0375	0.97	0.97	0.466	0.0025
Sep-12	4.94	47	3.56	7.3	9	0.11	0.025	0.0375	0.71	0.82	0.4	0.007
Dec-12	5.45	46	3.19	7.2	10	0.05	0.025	0.0375	0.38	0.38	0.112	0.014
Mar-13	5.98	45	5.5	7.1	9	0.05	0.025	0.0375	0.349	0.349	0.068	0.053
Jun-13	6.26	46	8.37	6.4	8	0.149	0.025	0.0375	0.959	1.108	0.172	0.01
Sep-13	5.97	39	6.26	6.7	8.2	0.05	0.01	0.0375	0.764	0.764	0.193	0.014
Dec-13		95	4.12	7.4	9.6	0.05	0.025	0.0375	0.395	0.395	0.099	0.011
Mar-14	5.07	258	8.72	7.6	12	0.05	0.01	0.0375	0.3	0.3	0.259	0.012
Jun-14	5.4	195	6.92	7.4	8.2	0.05	0.025	0.0375	1.33	1.33	0.429	0.013
Sep-14	5.15	42	9.79	5.8	7.9	0.05	0.054	0.0375	0.15	0.054	0.209	0.006
Dec-14	6.5	38	8.32	6.7	7.3	0.05	0.025	0.0375	0.792	0.792	0.109	0.012
Mar-15	6.07	36	8.84	5.7	7.9	0.05	0.025	0.375	1.11	1.11	0.27	0.01
Jun-15	6.09	38	8.91	6.8	7.3	0.05	0.025	0.0375	0.56	0.56	0.134	0.014
Sep-15	5.97	44	5.76	6.8	8.3	0.05	0.025	0.0375	0.906	0.906	0.181	0.011
Dec-15	5.91	84	5.5	7.2	9.34	0.05	0.025	0.0375	0.648	0.648	0.146	0.016
Mar-16	5.54	54	5.11	7.3	8.9	0.05	0.025	0.0375	0.548	0.548	0.151	0.013
Jun-16	3.88	66	6.47	7.5	9.2	0.171	0.025	0.0375	1.7	1.871	0.258	0.012
Sep-16	6.18	112	2.56	7.1	9.2	0.05	0.025	0.0375	0.423	0.423	0.109	0.0025
Dec-16	6.15	54	5.99	9	9.3	0.05	0.025	0.0375	0.15	0.225	0.119	0.01
Mar-17	6.25	41	6.83	7.9	8.8	0.05	0.025	0.0375	1.2	1.2	2.99	0.022
Jun-17	6.55	70	4.2	7.62	9.3	0.05	0.025	0.0375	1.51	1.51	1.1	0.019
Sep-17	5.41	57	3.85	8.19	9.4	0.05	0.025	0.0375	1.09	1.09	0.453	0.009
Dec-17	6.27	82	3.40	9.35	13	0.05	0.025	0.0375	0.336	0.336	0.083	0.0025

.

					Piezometer							
	pH	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N		Ortho Phos.
Nov-91	5.42	120		12	27.0	2.98		0.025	0.78	3.76	0.005	
Apr-99	5.82	880	5.4	10.1	11.0	0.15		0.05	0.29	0.44	0.031	
Mar-03	F 76	000	4.00	00.4	04.0	4.00		0.05	0.00	4.00	0.00	
Sep-03	5.75	208	4.32	32.1	31.8	4.36	0.04	0.25	0.25	4.36	0.80	
Dec-03	5.84	226	4.57	34	33.5	7.74	0.01	0.25	0.25	7.74	0.07	
Mar-04	5.82	230	4.72	42.2	42.2	6.80	0.002	0.25	0.25	6.8	0.0015	1
Jun-04	6.01	278	2.6	39.4	41.2	5.51	0.002	0.25	0.25	5.51	0.1	
Sep-04	6.14	284	3.88	38.9	40.8	6.36	0.002	0.25	0.25	6.36	0.067	
Dec-04	5.81	266	5.31	46.1	36.3	5.84	0.01	0.25	0.25	5.84	0.085	
Mar-05	5.89	209	4.1	35.4	36.7	4.23	0.002	0.25	0.25	4.23	0.111	
Jun-05	6.32	268	5.29	34	30.5	3.21	0.002	0.25	0.25	3.21	0.134	
Sep-05	6.80	254	3.55	29.4	31.4	2.29	0.002	0.25	0.25	2.29	0.068	
Dec-05	5.91	230	6.5	31.8	39.5	5.04	0.002	0.25	0.25	5.04	0.149	
Mar-06	6.28	342	5.48	41.6	38.7	17.2	0.01	0.25	0.25	17.2	0.063	
Jun-06	6.3	387	3.93	35	35	8.4	0.02	0.1	0.25	8.4	0.25	
Sep-06	0.40	0.45	0.00	46	31	9.9	0.03	0.1	0.25	9.9	0.25	1
Dec-06	6.12	245	6.66	38	38	5.7	0.01	0.1	0.6	6.2	0.25	
Mar-07	6.39	254	13.85	45	39	7.1	0.02	0.1	3.2	10	0.25	
Jun-07	6.16	334	4.01	46.9	34.3	5.18	0.01	0.25	0.25	5.2	0.155	
Sep-07	6.36	415	3.15	44.1	36.4	4.68	0.01	0.25	0.56	5.3	0.443	0.000
Dec-07	6.45	276	7.39	54	42.6	5.9	0.01	0.25	0.7	6.6	0.133	0.033
Mar-08	6.31	306	6.22	12.9	36.6	7.48	0.01	0.25	1.3	8.8	0.047	0.008
Jun-08	6.33	460	3.48	64	36	5.6	0.05	0.2	3.7	9.3	0.193	0.005
Sep-08	6.23	318	3.73	47	37	1.8	0.01	0.0375	0.72	2.52	0.034	0.005
Dec-08	6.37	310	3.71	40	42	4.4	0.025	0.0375	1.9	6.3	0.444	0.005
Mar-09	6.37	274	6.59	48.5	34	4.04	0.01	0.25	0.25	4.04	0.141	0.024
Jun-09	6.4	299	2.59	41	40	2.5	0.1	0.075	1.4	4	0.424	0.0025
Sep-09	6.48	52	2.89	44	35	5.3	0.025	0.0375	1.3	6.6	0.289	0.007
Dec-09	6.01	52	4.11	40	36	6	0.025	0.0375	1.6	7.6	0.127	0.0025
Mar-10	6.14	274	4.83	36	33.4	5.78	0.01	0.25	0.98	6.8	0.188	0.005
Jun-10	6.77	111	4.01	43	36	4.4	0.025	0.0375	1.3	5.7	0.215	0.007
Sep-10	8.67	853	4.48	31	23	0.91	0.025	0.0375	1.1	2.01	0.512	0.0025
Dec-10	6.11	269	6.01	48	40	7.9	0.025	0.0375	0.15	7.9	0.074	0.007
Apr-11	4.81	274	5.4	43	35	6.2	0.025	0.0375	2.3	8.5	0.729	0.0025
Jun-11	5.95	303	5.2	39	44.2	6.3	0.01	0.1	1.5	7.8	0.25	0.05
Sep-11	7	68	0.12	25	33	0.84	0.025	0.0375	1.1	1.94	0.11	0.012

Dec-11	6.03	248	3.24	42	42	11	0.1	0.0375	0.53	11.53	0.138	0.0025
Mar-12	6.05	212	3.12	37	35	6.2	0.025	0.0375	2.5	8.7	0.731	0.0025
Jun-12	5.75	243	4.76	35	36	3.5	0.025	0.0375	1.8	5.3	0.496	0.0025
Sep-12	4.08	295	6.69	38	39	4.7	0.025	0.0375	0.64	5.34	0.509	0.019
Dec-12	6.41	215	3.09	42	50	6.7	0.025	0.0375	1.2	7.9	0.155	0.0025
Mar-13	6.22	230	5.68	37	43	3.22	0.025	0.0375	3.61	6.83	1.06	0.007
Jun-13	6.65	194	5.53	28	27	2.79	0.025	0.075	2.91	5.7	0.995	0.0025
Sep-13	6.02	240	3.49	31	35	3.59	0.03	0.0375	1.4	5.02	0.279	0.0025
Dec-13		302	2.13	30	34	10.9	0.025	0.0375	0.75	10.9	0.095	0.0025
Mar-14	5.97	214	6.94	39	44	8.38	0.02	0.187	2.46	10.84	0.35	0.0025
Jun-14	5.95	353	5.4	48	53	5.33	0.025	0.75	2.77	8.1	0.489	0.019
Sep-14	5	286	4.22	49	53	6.06	0.025	0.0375	1.75	7.81	0.245	0.06
Dec-14	6	257	3.14	37	41	6.96	0.025	0.145	0.337	7.297	0.152	0.104
Mar-15	5.8	201	7.23	35	40	4	0.025	0.075	2.74	6.74	0.697	0.194
Jun-15	6.81	214	7.96	45	60	5.91	0.025	0.075	1.08	6.99	0.509	0.307
Sep-15	6.16	282	5.93	42	43	5.81	0.054	0.0375	1.39	7.254	1.04	0.659
Dec-15	5.84	579	3.2	43	45.2	13.7	0.025	0.0375	0.75	13.7	0.913	0.694
Mar-16	5.55	283	5.39	36	42	8.31	0.025	0.0375	0.15	8.31	1	1.05
Jun-16	5.83	308	9.99	40	44	8.05	0.025	0.77	1.93	9.98	1.57	1.04
Sep-16	5.89	385	6.68	34	45	8.67	0.025	0.075	0.3	8.67	1.83	0.052
Dec-16	5.86	228	5.42	39	44	18.6	0.025	0.077	0.15	18.6	1.46	1.18
Mar-17	6.12	235	11.55	110	79	9.72	0.025	0.0375	1.96	11.68	2.05	1.2
Jun-17	6.58	406	6.3	40.8	47	9.86	0.025	0.0375	3.28	13.14	2.45	1.48
Sep-17	5.37	176	3.16	43.4	44	12.7	0.025	0.0375	1.55	14.25	2.25	1.97
Dec-17	6.39	294	7.52	51.4	46	9.16	0.025	0.0375	0.807	9.967	2.35	2.16

	pН	Conductivity	DO	Sodium	Piezomete Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N	Total Phos.	Ortho Pho
Nov-91	6.33	74	00	6.6	10.7	0.05	THUILO	0.025	0.94	0.99	0.005	
Apr-99	7.0	673	2.6	5.2	7.3	0.28		0.05	0.73	1.01	0.051	
Mar-03	1.0	0/5	2.0	5.2	1.0	0.20		0.00	00			
Sep-03	6.5	65	3.5	7	8.0	0.025		0.25	0.25	0.25	0.967	
Dec-03	6.65	55	4.28	7.6	10.0	0.025	0.01	0.25	0.25	0.25	0.185	
Mar-04	6.46	57	3.85	7.3	8,3	0.005	0.002	0.25	0.25	0.25	0.212	
Jun-04	6.39	69	3.32	7.9	8.5	0.005	0.002	0.25	0.25	0.25	0.317	
Sep-04	7.06	300	4.99	7.4	8.4	0.005	0.002	0.25	0.25	0.25	1.00	
Dec-04	6.29	97	3.07	7.9	11.8	0.025	0.01	0.25	0.25	0.25	0.767	
Mar-05	6.07	56	3.9	6.5	8.2	0.005	0.002	0.25	0.25	0.25	0.790	
Jun-05	6.87	68	5.31	7.6	8.0	0.02	0.002	0.25	0.25	0.25	1.830	
Sep-05	6.84	65	3.98	7	8.7	0.005	0.002	0.25	0.25	0.25	0.470	
Dec-05	6.21	98	6.51	6.2	8.2	0.02	0.002	0.25	0.25	0.25	0.673	
Mar-06	6.71	61	5.01	7.2	8.5	0.025	0.01	0.25	0.25	0.25	0.573	
Jun-06	6.79	65	5.01	8	9	0.07	0.01	0.1	0.25	0.25	0.25	
Sep-06		05	5.01	9	7	0.04	0.01	0.1	2.6	2.6	5	
Dec-06		192	10.24	8	9	0.05	0.01	0.1	1.1	1.1	1.6	
Mar-07	6.53	56	12.48	9	91	0.02	0.02	0.2	1.5	1.5	2.6	
Jun-07	6.98	70	3.64	6.1	8.5	0.025	0.01	0.25	0.25	0.25	0.93	
Sep-07	6.72	70	3.55	4.4	11.7	0.025	0.01	0.25	0.25	0.25	1.5	
Dec-07	6.5	57	4.44	6	8.2	0.025	0.01	0.25	1.5	1.5	0.861	0.014
Mar-08	6.66	124	5.11	6	8.6	0.4	0.01	0.25	0.56	1	0.96	0.4
Jun-08	6.6	74	3.66	8.8	8.1	1.1	0.02	0.2	5.2	6.3	29.1	0.269
	6.73	92	4.44	8,2	9	0.05	0.01	0.0375	0.62	0.62	0.969	0.12
Sep-08 Dec-08	6.51	66	3.91	7.4	20	0.15	0.025	0.075	3.8	3,95	10.2	0.14
Mar-09		59	4.04	7.5	12.3	0.025	0.01	0.25	0.25	0.285	0.597	0.19
Jun-09		63	4.63	7.4	8.9	0.15	0.06	0.0375	0.98	1.19	2.61	0.13
Sep-09		66	3.26	8.4	7.4	0.05	0.025	0.0375	1	1	4.65	0.16
Dec-09		55	5.16	7.6	7.1	0.05	0.025	0.1875	1.1	1.1	3.56	0.223
Mar-10		66	4.58	6.5	8.8	0.05	0.020	0.25	0.25	0.25	2.83	0.30
Jun-10		61	4.55	7.8	7.9	0.11	0.025	0.0375	0.35	0.46	1.45	0.17
Sep-10		102	4.19	8.6	8.2	0.05	0.025	0.0375	0.81	0.81	1.16	0.16
Dec-10		55	6.03	8.8	7.9	0.05	0.025	0.0375	0.15	0.225	0.6	0.16
Apr-11	1	72	0.66	7.8	8.2	0.18	0.025	0.0375	0.75	0.93	2.06	0.12
Jun-11		68	4.37	7.0	8.6	0.01	0.020	0.1	0.9	0.9	1.5	0.2
Sep-11		165	0.08	7.3	8.5	0.2	0.025	0.0375	7.4	7.6	11.4	0.14
Dec-11		54	2.86	8	9.1	0.05	0.01	0.0375	0.65	0.65	0.893	0.084
Mar-12		56	4.41	8.3	8.8	0.05	0.025	0.0375	2	2	4.19	0.12
Jun-12		63	4.41	8.2	8.7	0.05	0.025	0.0375	, 1.4	1.4	4.27	0.12
Sep-12		67	2.36	8.7	8.5	0.05	0.025	0.0375	1.1	1.1	4.37	0.13
Dec-12		86	2.30	8.5	9.8	0.00	0.025	0.075	0.94	1.04	5.16	0.149
Dec-12	0.55	00	2.13	0.0	0.0	0.1	0.020	0,010	0.01	1.01	0110	

Mar-13	6.62	62	5.17	8.1	17	2.05	0.005	0.0075	0.05	0.0	0.04	1 00 1
						3.05	0.025	0.0375	0.85	3.9	3.31	1.02
Jun-13	5.85	68	6.47	7.6	7.7	0.05	0.025	0.0375	1.07	1.07	2.62	0.124
Sep-13	6.69	60	4.22	7.9	7.8	0.05	0.01	0.0375	0.512	0.512	2.41	0.131
Dec-13		114	3.62	7.4	7.6	0.05	0.025	0.0375	0.994	0.994	2.3	0.122
Mar-14	6.23	53	6.65	8.5	12	0.05	0.01	0.0375	0.332	0.332	1.2	0.108
Jun-14	6.4	68	5.04	9.5	7.9	0.05	0.025	0.0375	1.25	1.25	4.47	0.146
Sep-14	5.37	64	4.27	7.3	8.2	0.05	0.025	0.0375	0.44	0.44	1.11	0.167
Dec-14	6.5	55	4.28	7.1	7.4	0.05	0.025	0.088	0.373	0.373	1.3	0.13
Mar-15	3.26	46	19.92	7.4	8.2	0.05	0.025	0.0375	1.12	1.12	6.31	0.089
Jun-15	6.62	47	12.04	8.7	7.4	0.05	0.025	0.1875	1.33	1.33	13.1	0.132
Sep-15	6.32	60	3.74	8.8	8	0.05	0.025	0.0375	0.851	0.851	3.05	0.154
Dec-15	6.27	118	3.65	8.1	9.28	0.05	0.025	0.0375	0.15	0.225	1.54	0.151
Mar-16	6.21	66	5.96	8	8.3	0.05	0.025	0.0375	0.3	0.375	1.55	0.129
Jun-16	5.7	80	6.36	8.5	8.3	0.05	0.025	0.0375	0.956	0.956	2.87	0.16
Sep-16	6.68	124	2.4	8.1	8.2	0.05	0.025	0.0375	0.15	0.225	1.92	0.12
Dec-16	6.5	55	7.06	8.4	7.9	0.05	0.025	0.0375	0.431	0.431	4.63	0.114
Mar-17	6.65	75	6.49	13	15	0.328	0.025	0.0375	0.424	0.752	13.8	0.137
Jun-17	6.42	74	4.45	8.51	8.6	0.125	0.025	0.0375	1.41	1.41	4.9	0.122
Sep-17	5.2	204	4.58	9.33	8.5	0.05	0.025	0.0375	1.84	1.84	5.06	0.139
Dec-17	6.83	73	5.61	7.97	7.7	0.05	0.025	0.0375	0.355	0.355	2.38	0.154

Notes:

1. 1991 testing performed by N/F IEP, Inc.
 2. Blank cell = not tested / not applicable
 3. Blue indicates value reported as below reporting limit, listed as half of reporting limit.
 4. Green indicates value reported as less than (<), listed as half the reported value.

SURFACE WATER MONITORING POINTS

					Surface Wa	ter SW-1						
	pН	Conductivity	DO	Sodium	Chloride	Nitrate	Nitrite	Ammonia	TKN	Total N		Ortho Phos.
Dec-91	6.46	111	11.8			0.41		0.16	0.31	0.72	0.005	
May-99	7.42	111	8.7			0.30		0.05	0.73	1.03	0.031	
Mar-03	0.50	89	9.05			0.39		0.25	0.25	0.39	0.517	
Sep-03 Dec-03	6.52 7.09	78	9.03 9.27			0.33	0.01	0.25	0.25	0.21	0.083	
Mar-04	6.49	82	8.63			0.45	0.002	0.25	0.25	0.45	0.073	
Jun-04	6.54	61	7.49			0.45	0.002	0.25	0.25	0.45	0.05	
Sep-04	6.13	89	7.55			0.43	0.02	0.25	0.25	0.43	0.083	
Dec-04	6.30	83	8.6			0.43	0.01	0.25	0.25	0.43	0.095	
Mar-05	6.36	68	9			0.29	0.002	0.25	0.25	0.25	0.119	
Jun-05	6.73	102	6.69			0.23	0.002	0.25	0.25	0.25	0.066	
Sep-05	6.68	92	8.52			0.37	0.002	0.25	0.25	0.25	0.053	
Dec-05	6.67	70	11.55			0.36	0.002	0.25	0.25 0.25	0.25 0.40	0.038 0.049	
Mar-06	6.74	74	10.76			0.38 0.36	0.01 0.01	0.25 0.1	0.25	0.40	0.049	
Jun-06	6.85 NT	87 NT	10.2 NT			0.30	0.01	0.1	0.25	0.25	0.25	
Sep-06 Dec-06	NT 6.08	NT 80	14.89			0.34	0.01	0.1	0.25	0.25	0.25	
Mar-07	6.33	66	16		180	0.29	0.02	0.1	0.6	0.90	0.25	
Jun-07	6.35	90	6.15			0.36	0.01	0.25	0.25	0.25	0.02	
Sep-07	6.27	93	7.31			0.53	0.01	0.25	0.25	0.50	0.027	
Dec-07	6.12	250	7.38			0.56	0.01	0.25	1.4	2.00	0.027	0.014
Mar-08	6.05	166	10.65			0.7	0.01	0.25	0.56	1.30	0.04	0.003
Jun-08	6.43	257	5.28			0.26	0.05	0.2	0.63	0.89	0.088	0.005
Sep-08	6.35	257	7.01			0.24	0.01	0.107	0.46	0.70	0.036	0.0025
Dec-08	5.75	170	9.01			0.63	0.025	0.214	0.25 0.25	0.63 0.44	0.019 0.149	0.0025 0.016
Mar-09	6.62	73	10.79			0.44 0.47	0.01 0.08	0.25 0.162	0.25	0.44	0.025	0.0025
Jun-09	6.16	209 208	6.47 4.14			0.47	0.025	0.102	0.25	0.35	0.056	0.0025
Sep-09 Dec-09	6.03 5.63	208 156	6.22			0.56	0.025	0.217	0.55	1.11	0.023	0.0025
Mar-10	6.11	70	10.61			0.30	0.01	0.25	0.25	0.25	0.047	0.005
Jun-10	6.47	81	8.08			0.27	0.025	0.0375	0.32	0.59	0.038	0.0025
Sep-10	6.46	1003	5.51			0.23	0.025	0.105	0.15	0.23	0.266	0.0025
Dec-10	5.86	160	12.25			0.68	0.05	0.21	0.32	1.00	0.029	0.005
Apr-11	5.31	226	5.81			0.23	0.025	0.0375	0.65	0.88	0.064	0.0025
Jun-11	5.42	84	5.87			0.08	0.01	0.1	0.6	0.68	0.25	0.05
Sep-11	6.64	96	0.08			0.34	0.025	0.0375	0.38	0.72	0.018 0.384	0.0025 0.0025
Dec-11	5.65	64	5.04			0.25	0.01	0.0375 0.0375	1 0.41	1.25 0.67	0.384	0.0025
Mar-12	5.86	70	6.7 4.9			0.26 0.05	0.025 0.025	0.0375	0.89	0.89	0.042	0.0025
Jun-12 Sep-12	5.67 6.24	83 86	4.9 2.94			0.36	0.025	0.0375	0.45	0.81	0.027	0.007
Dec-12	5.24	158	3.94			0.22	0.025	0.0375	0.72	0.94	0.389	0.538
Mar-13	6.36	97	10.48			0.283	0.025	0.097	0.363	0.65	0.031	0.0025
Jun-13	6.46	81	5.7			0.5	0.025	0.0375	0.376	0.88	0.073	0.008
Sep-13	6.05	90	5.62			0.324	0.01	0.0375	0.389	0.71	0.038	0.008
Dec-13		128	10.07			0.315	0.025	0.08	0.33	0.65	0.017	0.0025
Mar-14	5.59	62	13.99			0.276	0.01	0.082	0.382	0.66	0.135	0.007
Jun-14	6.23	113	8.42			0.43	0.025	0.0375	0.381	0.81	0.036 0.031	0.0025 0.006
Sep-14	5.30	84	6.6			0.145	0.025 0.025	0.0375 0.114	0.15 0.438	0.15 0.95	0.031	0.008
Dec-14 Mor 15	6.00	81 70	9.87 10.47			0.511 0.364		0.0375	0.438	0.95	0.015	0.007
Mar-15 Jun-15	6.11 6.39	79 100	10.47 7.23			0.364 0.326	0.025	0.0375	0.303	0.63	0.022	0.011
Sep-15	5.49	96	3.56			0.135	0.025	0.0375	0.15	0.14	0.034	0.006
Dec-15	6.14	185	9.06			0.456	0.025	0.0375	0.15	0.46	0.051	0.009
Mar-16	6.20	108	9.53			0.365	0.025	0.0375	0.15	0.37	0.029	0.0025
Jun-16	5.36	135	9.97			0.474	0.025	0.0375	0.301	0.78	0.033	0.009
Sep-16	6.46	250	3.98			0.596	0.025	0.0375	0.15	0.60	0.023	0.0025
Dec-16	6.01	86	12.4			3.69	0.025	0.0375	0.15	3.69	0.015	0.054
Mar-17	3.31	65	13.66			0.44	0.025	0.0375	0.345	0.79	0.024	0.006
Jun-17	6.86	137	6.86			0.317	0.025	0.0375	0.15	0.32 0.90	0.018 0.029	0.012 0.0025
Sep-17	5.93	70	8.13			0.466	0.025 0.025	0.0375 0.0375	0.436 0.454	0.90	0.029	0.0025
Dec-17	6.29	293	10.91			0.458	0.025	0.0375	0.404	0.91	0.020	0.012

	рĤ	Conductivity	DO	Sodium	Chloride	Vater SW-2 Nitrate	Nitrite	Ammonia	TKN	Total N	Total Phos.	Ortho Phos.
Dec-91	6.52	114	12.8			0.38		0.15	0.48	0.86	0.005]
May-99	8.12	138	9.0			0.46		0.05	0.1	0.46	0.031	
Mar-03												
Sep-03	7.4	98	9.58			0.35		0.25	0.25	0.25	0.717	
Dec-03	6.84	131	9.64			0.60	0.01	0.25	0.25	0.60	0.167	
Mar-04	6.25	139	9.13			0.60	0.002	0.25	0.25	0.60	0.061	
Jun-04	6.51	159	7.25			0.28	0.002	0.25	0.25	0.25	0.05	
Sep-04 Dec-04	6.14 6.13	401	7.37 8.63			0:52	0.02	0.25	0.25	0.52	0.017	
Mar-05	6.09	112 145	0.03 9.3			0.58	0.01	0.25	0.25	0.58	0.083	
Jun-05	6.63	145	9.3 7.83			0.67 0.26	0.002 0.002	0.25 0.25	0.25 0.25	0.67	0.119 0.054	
Sep-05	6.83	202	9.59			0.20	0.002	0.25	0.25	0.25 0.57	0.054	
Dec-05	6.55	435	11.34			0.57	0.002	0.25	0.25	0.57	0.075	
Mar-06	6,72	76	10.79			0.45	0.01	0.25	0.25	0.40	0.078	
Jun-06	6.87	88	10.34			0.36	0.01	0.1	0.25	0.25	0.25	
Sep-06	NT	NT	NT			0.35	0.01	0.1	0.25	0.25	0.25	
Dec-06	6.63	250	14.99			0.67	0.01	0,1	0.25	0.70	0.25	
Mar-07	6.8	85	15,67		250	0.45	0.01	0.1	0.7	1.20	0.25	
Jun-07	6.84	163	6.44			0.60	0.01	0.25	0.84	1.40	0.063	
Sep-07	6.99	322	8.92			1.20	0.01	0.25	0.25	1.20	0.309	
Dec-07	6.54	431	7.43			1.04	0.01	0.25	0.25	1.00	0.068	0.055
Mar-08	6.81	950	11.76			0.34	0.01	0.25	0.7	1.00	0.06	0.003
Jun-08	6.81	147	6.9			0.46	0.05	0.2	0.25	0.46	0.039	0.012
Sep-08 Dec-08	6.71	127	9.67			0.53	0.01	0.0375	0.49	1.02	0.033	0.011
Mar-09	6.39 6.75	259	8.91			1.30	0.025	0.075	6.6	7.90	2.28	0.07
Jun-09	6.94	215 143	12.01 6.73			0.47	0.01	0.25	0.25	0.47	0.079	0.017
Sep-09	6.43	201	4.85			0.50 0.52	0.06 0.025	0.0375 0.0375	0.25	0.56	0.046	0.006
Dec-09	6,06	209	6.83			0.63	0.025	0.0375	0.56 0.15	1.08 0.63	0.18 0.09	0.04
Mar-10	6.15	71	10.02			0.31	0.025	0.005	0.15	0.05	0.182	0.053 0.005
Jun-10	6.31	92	9.11			0.76	0.025	0.0375	3.4	4.16	0.775	0.045
Sep-10	6.59	281	7.26			0.37	0.025	0.0375	0.15	0.37	0.077	0.012
Dec-10	6.38	130	11.49			0.86	0.025	0.0375	0.15	0.86	0.091	0.036
Apr-11	5.39	131	4.8			0.48	0.025	0.0375	0.42	0.90	0.073	0.0025
Jun-11	6.07	181	4.3			0.41	0.01	0.1	0.8	1.21	0.25	0.05
Sep-11	6.9	146	0.08			0.41	0.025	0.0375	0.39	0.80	0.075	0.0025
Dec-11	6.38	73	6.32			0.45	0.01	0.0375	0.15	0.45	0.048	0.0025
Mar-12	6.31	260	6.99			1.00	0.025	0.0375	0.36	1.36	0.093	0.012
Jun-12	6.23	190	5.56			0.45	0.025	0.0375	0.78	1.23	0.073	0.0025
Sep-12	6.75	175	3.52			0.52	0.025	0.0375	0.31	0.83	0.1	0.028
Dec-12	6.41	215	3.09			0.63	0.025	0.0375	0.39	1.02	0.212	0.0025
Mar-13	6.46	166	11.12			0.575	0.0025	0.0375	0.421	1.00	0.158	0.052
Jun-13	6.82	138	6.74			0.44	0.025	0.0375	0.345	0.79	0.062	0.043
Sep-13 Dec-13	6.53	186 239	6.42 9.41			0.822	0.01	0.0375	0.498	1.32	0.126	0.045
Mar-14	6.24	159	9.41 14.09			0.777 1.03	0.025 0.01	0.091 0.0375	0.43 0.419	1.21 1.45	0.145	0.053
Jun-14	6.4	415	8.88			0.701	0.025	0.0375	1.33	2.03	0.118 0.27	0.08 0.051
Sep-14	5.37	96	7.49			1.02	0.025	0.0375	0.412	1.43	0.27	0.051
Dec-14	6	438	8.84			0.869	0.025	0.0375	0.634	1.43	0.157	0.041
Mar-15	5.98	174	11.31			2.11	0.025	0.0375	0.365	2.48	0.034	0.119
Jun-15	6.13	353	3.67			0,768	0.025	0.0375	0.15	0.77	0.072	0.058
Sep-15	6.43	304	7.42			0.979	0.025	0.0375	0.479	1.46	0.124	0.086
Dec-15	6.03	587	9.24			0.917	0.025	0.109	0.15	0.92	0.163	0.138
Mar-16	6.25	193	9.16			1.07	0.025	0.0375	0.547	1.62	0.313	0.083
Jun-16	6.49	279	9.8			0.58	0.025	0.0375	0.497	1.08	0.116	0.074
Sep-16	6.72	64	3.54			0.624	0.025	0.0375	0.671	1.30	0.101	0.02
Dec-16	6.27	803	13.08			6.29	0.025	0.0375	0.341	6.63	0.225	0.105
Mar-17	6.21	285	11.3			5.79	0.025	0.0375	1.91	7.70	0.56	0.096
Jun-17	6.8	305	7.94			0.859	0.025	0.0375	1.27	2.13	0.516	0.102
Sep-17	5.84	342	7.03			0.566	0.025	0.0375	0.366	0.93	0.087	0,04
Dec-17	6.88	241	11.48			0.742	0.025	0.0375	0.15	0.74	0.09	0.066

					Surface Wa		h literite a	Ammonio	TKN	Total N	Total Phos.	Ortho Phos.
	pH	Conductivity	DO	Sodium	Chloride	Nitrate 0.40	Nitrite	Ammonia 0.10	0.48	0.86	0.005	
Dec-91	6.78	1,945	13.0			0.40		0.05	0.1	0.32	0.062	
May-99	7.98	220	8.5			0.32		0.00	••••			
Mar-03		00	9.45			0.38		0.25	0.25	0.25	0.717	
Sep-03	7.07	93 95	9.45 9.95			0.26	0.01	0.25	0.25	0.25	0.207	
Dec-03	6.98	95 109	9.95 10.2			0.45	0.002	0.25	0.25	0.25	0.073	
Mar-04	6.14		7.59			0.44	0.002	0.25	0.25	0.25	0.067	
Jun-04	6.04	359	7.25			0.02	0.02	0.25	0.84	0.80	0.025	
Sep-04	5.19	1,587 2,400	9.55			0.49	0.01	0.25	0.25	0.49	0.092	
Dec-04	5.14 5.93	96	9.2			0.46	0.002	0.25	0.25	0.25	0.131	
Mar-05	6.84	118	8.21			0.24	0.002	0.25	0.25	0.25	0.068	
Jun-05 Sep-05	6.76	118	7.86			0.38	0.002	0.25	0.25	0.25	0.105	1
Dec-05	6.13	807	10.25			0.13	0.002	0.25	0.25	0.25	0.078	
Mar-06	6.75	80	10.71			0.42	0.01	0.25	0.25	0.40	0.073	
Jun-06	6.89	91	10.33			0.36	0.01	0.1	0.25	0.25	0.25	
Sep-06	NT	NT	NT			0.32	0.01	0.1	0.25	0.25	0.25 0.25	
Dec-06	6	1,810	15.1			0.31	0.01	0.1	0.7	1.00	0.25	
Mar-07	6.76	79	15		330	0.37	0.01	0.1	0.6	1.00 1.20	0.023	
Jun-07	6.11	158	6.05			0.46	0.01	0.25	0.7	0.25	0.263	
Sep-07	6.85	162	7.11			0.44	0.01	0.25	0.25 0.25	0.25	0.109	0.027
Dec-07	6.69	154	3.88			0.4	0.01	0.25	0.25	1.00	0.043	0.003
Mar-08	6.66	998	12.66			0.4	0.01	0.25 0.2	0.50	0.91	0.031	0.008
Jun-08	6.57	78	3.74			0.39	0.05	0.2	0.32	0.88	0.049	0.009
Sep-08	6.6	412	10.15			0.49	0.01	0.0375	0.35	0.48	0.051	0.015
Dec-08	6.53	224	9.11			0.48	0.025 0.01	0.0375	0.25	0.47	0.056	0.015
Mar-09	6.36	105	10.58			0.47 0.63	0.01	0.0375	1.4	2.10	1.42	0.034
Jun-09	6.78	110	5.11			0.83	0.025	0.0375	0.15	0.48	0.087	0.037
Sep-09	6.55	311	5.58			0.48	0.025	0.084	0.46	0.76	0.044	0.0025
Dec-09	6.1	281	6.89			0.36	0.01	0.25	0.25	0.25	0.105	0.005
Mar-10	6.11	115	9.26			0.58	0.025	0.0375	0.15	0.58	0.117	0.052
Jun-10	6.52	111	8.34 7.37			0.35	0.025	0.0375	0.4	0.75	0.07	0.0025
Sep-10	6.53	122	12.94			0.42	0.025	0.084	0.15	0.42	0.06	0.009
Dec-10	6.12	119 122	0.09			0.32	0.025	0.0375	2.1	2.42	0.582	0.007
Apr-11	6.21	240	3.85			0.25	0.01	0.1	0.9	1.15	0.25	0.05
Jun-11	5.35 6.39	2,410	0.08			0.05	0.025	0.0375	0.6	0.60	0.198	0.0025
Sep-11 Dec-11	6.35	133	6.24			0.48	0.01	0.0375	0.15	0.48	0.022	0.0025
Mar-12	6.02	797	6.53			0.49	0.025	0.0375	0.9	1.39	0.458	0.0025
Jun-12	6.12	601	4.78			0.21	0.025	0.0375	1.1	1.31	0.101	0.0025
Sep-12	7.03	331	6.33			0.22	0.025	0.103	0.4	0.62	0.1	0.033 0.0025
Dec-12	5.35	86	2.19			0.55	0.025	0.0375	0.33	0.88	0.056	0.0025
Mar-13	6.26	108	8.08			0.388	0.025	0.0375	0.445	0.83	0.046 0.037	0.022
Jun-13	6.87	116	6.19			0.31	0.025	0.0375	0.327	0.64 1.72	0.037	0.007
Sep-13	6.38	126	7.48			1.72	0.01	0.0375	0.15	0.65	0.042	0.015
Dec-13		650	8.47			0.172	0.025	0.084	0.475 0.326	0.65	0.049	0.015
Mar-14	6.23	522	12.76			0.366	0.01	0.077	1.31	1.71	0.465	0.021
Jun-14	6.35	973	8.01			0.397	0.025	0.174 0.0375	0.332	0.70	0.274	0.011
Sep-14	5.71	2,068	6.34			0.366	0.025 0.025	0.0375	0.352	1.08	0.048	0.016
Dec-14	5.5	880	9.62			0.611 0,393	0.025	0.0375	0.548	0.94	0.051	0.01
Mar-15		92	10.79			0.393	0.025	0.0375	0.316	0.55		0.043
Jun-15			9.13			0.234	0.025		0.512	1.04		0.02
Sep-15			7.12			0.531	0.025		0.15	0.53	0.045	0.023
Dec-15			10.03			0.282	0.025		0.551	0.83		0.048
Mar-16			8.57			0.452	0.025	·	0.305	0.76		0.021
Jun-16			11.46			0.432	0.025		0.648	0.87		0.0025
Sep-16			7 12.58			0.462	0.025		0.515	0.98	0.31	0.019
Dec-16			12.58			0.551	0.025		0.15	0.55		0.006
Mar-17			7.36			0.182	0.025		0.6	0.78		0.049
Jun-17 Son 17			6			0.302	0.025		0.507	0.81		0.017
Sep-17 Dec-17			11.39			0.451	0.025		0.15	0.45	0.042	0.016
Dec-17		16.6	11.00									

1. 1991 testing performed by N/F IEP, Inc.
 2. Blank cell = not tested / not applicable
 3. Blue indicates value reported as below reporting limit, listed as half of reporting limit.
 4. Green indicates value reported as less than (<), listed as half the reported value.

Notes:

ANALYTICAL REPORT

Lab Number:	L1708191
Client:	Bennett Environmental Associates 1573 Main Street Brewster, MA 02631
ATTN:	David Bennett
Phone:	(508) 896-1706
Project Name:	WINDCHIME
Project Number:	BEA99-2252
Report Date:	03/23/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WINDCHIME Project Number: BEA99-2252

Receive Date 03/17/17 03/17/17 03/17/17 03/17/17 03/17/17 03/17/17 03/17/17 03/17/17 03/17/17 03/17/17 03/17/17 03/16/17 10:15 03/16/17 10:25 03/16/17 10:45 03/16/17 14:25 03/16/17 13:50 03/16/17 12:15 03/16/17 13:15 03/16/17 12:40 03/16/17 09:30 03/16/17 10:30 03/16/17 09:40 Collection Date/Time MASHPEE, MA Location Sample WATER Matrix Client ID MW-3R PZ-1R PZ-2R PZ-3R **NW-1 MW-2 MW-4** SW-3 SW-1 SW-2 B-2R L1708191-08 L1708191-09 L1708191-10 L1708191-03 L1708191-05 L1708191-06 L1708191-11 L1708191-02 L1708191-04 L1708191-01 L1708191-07 Sample ID Alpha

Serial_No:03231719:19

L1708191

Lab Number: Report Date:

03/23/17

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1708191 Report Date: 03/23/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: WINDCHIME Project Number: BEA99-2252
 Lab Number:
 L1708191

 Report Date:
 03/23/17

Case Narrative (continued)

Nitrogen, Total Kjeldahl

L1708191-04: The sample has an elevated detection limit due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Mahally Michelle M. Morris

Title: Technical Director/Representative

Date: 03/23/17

METALS

Project Name: Project Number:		CHIME 9-2252		SAMPL		III TQ	Lab Nui Report		L170819 03/23/17		
Lab ID: Client ID: Sample Location: Matrix:	B-2R	191-01 IPEE, MA		SAWPL		ULIS	Date Co Date Re Field Pr	eceived:	03/16/1 03/17/1 Not Spe	7	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Sodium, Total	39		mg/l	2.0		1	03/21/17 11:5	5 03/21/17 21:2	7 EPA 3005A	1,6010C	AB

arameter	esult Qualifier	Qualifier	Units	RL.	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Matrix:	Water							- [peomea	
Sample Location:	MASHPEE, MA	PEE, MA					Field P			pecified	
Client ID:	MW-3R	R						eceived:	03/17/		
Lab ID:	L1708191-02	191-02					Date C	ollected:	03/16	/17 13:50	
				SAMP	LE RES	BULTS					
Project Number:	BEA99-2252	9-2252					Report	Date:	03/23	/17	
Project Name:	WINDCHIME	CHIME					Lab Nı	umber:	L1708	8191	
	WINDCHIME	CHIME					Lab Nı	umber:	L1708	3191	

Sodium, Total 35 mg/l 2.0 -- 1 03/21/17 11:55 03/21/17 21:45 EPA 3005A 1,6010C AB

Total Metals - Mans Sodium, Total	field Lab 39		mg/l	2.0		1	03/21/17 11:5	5 03/21/17 21:4	9 EPA 3005A	1,6010C	AB
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Method	Analyst
Lab ID: Client ID: Sample Location: Matrix:	MW-1	191-03 IPEE, MA					Date Co Date Re Field Pr	eceived: ep:	03/16/17 03/17/17 Not Spe	7	
Project Number:	BEA99	9-2252		SAMPI		ULTS	Report	Date:	03/23/17		
Project Name:	WIND	CHIME					Lab Nur	nber:	L170819	1	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Lab ID: Client ID: Sample Location: Matrix:	MW-2	IPEE, MA		SAMP	LE RES	SULTS		ollected: eceived: rep:	03/17/	/17 13:15 /17 pecified	
Project Name: Project Number:		DCHIME 99-2252					Lab Nı Report	umber: t Date:	L1708 03/23		

			Analyst
Total Metals - M	lansfield Lab		
Sodium, Total	37	mg/l 2.0 1 03/21/17 11:55 03/21/17 21:54 I	EPA 3005A 1,6010C AB

Matrix:	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Sample Location:	MASH Water	PEE, MA				Dilution	Field Pro Date	ep: Date	Not Spe Prep	cified Analytical	
Lab ID: Client ID:	L1708 MVV-4	191-05		SAMPL	E RES	ULTS	Date Co Date Re		03/16/17 03/17/17	7	
Project Name: Project Number:	WIND BEA99	CHIME 9-2252					Lab Nur Report		L170819 03/23/17		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Matrix:	Water							•			
Sample Location:	MASH	IPEE, MA					Field Pi	rep:	Not Si	pecified	
Client ID:	PZ-1F	2					Date Re	eceived:	03/17/		
Lab ID:	L1708	8191-06					Date Co	ollected:	03/16/	/17 09:30	
				SAMP	LE RES	ULTS					
Project Number:	BEA9	9-2252					Report	Date:	03/23	/17	
Project Name:	WINE	CHIME					Lab Nı	ımber:	L1708	191	

Sodium, Total 7.9 mg/l 2.0 -- 1 03/21/17 11:55 03/21/17 22:03 EPA 3005A 1,6010C AB

Project Name:	WIND	CHIME					Lab Nu	mber:	L170819	91	
Project Number:	BEA9	9-2252					Report	Date:	03/23/1	7	
				SAMPI	LE RES	ULTS					
Lab ID:	L1708	191-07					Date Co	ollected:	03/16/1	7 10:30	
Client ID:	PZ-2F	R					Date Re	eceived:	03/17/1	7	
Sample Location:	MASH	IPEE, MA					Field Pr	ep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Metals - Mans	field Lab										
Sodium, Total	110		mg/l	2.0		4	02/01/17 11.5	5 03/21/17 22:07	EPA 3005A	1,6010C	AB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Matrix:	Water										
Sample Location:	MASH	IPEE, MA					Field Pr	rep:	Not Sp	pecified	
Client ID:	PZ-3F	R					Date Re	eceived:	03/17/	'17	
Lab ID:	L1708	191-08					Date Co	ollected:	03/16/	'17 10:15	
				SAMP	LE RES	ULTS					
Project Number:	BEA9	9-2252					Report	Date:	03/23/	′17	
Project Name:	WIND	CHIME					Lab Nu	mber:	L1708	191	

Sodium, Total 13 mg/l 2.0 -- 1 03/21/17 11:55 03/21/17 22:12 EPA 3005A 1,6010C AB

 Lab Number:
 L1708191

 Report Date:
 03/23/17

Project Name:WINDCHIMEProject Number:BEA99-2252

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Man	sfield Lab for sample(s):	01-08 B	atch: N	/G98695	i 2- 1				

Prep Information

Digestion Method: EPA 3005A

Lab Number: L1708191 Report Date: 03/23/17		D Qual RPD Limits							M.PHA
Re Re	i		ı						
inalysis	%Recovery		80-120						
ample A lity contro		Qual							
Lab Control Sample Analysis Batch Quality Control	LCSD	/«кесочегу 3952-2	·						
Г		Batch: WG986952-2							
	LCS	mple(s): 01-08 Ba	100						
WINDCHIME BEA99-2252		I Lab Associated sar							
Project Name: Project Number:	rotomared	Total Metals - Mansfield Lab Associated sample(s): 01-08	Sodium, Total						Page 15 of 41

L1708191 33/23/17	RPD RPD Qual Limits		20
L17 03/2	Qua	Û	
	RPD	Sampl	•
Lab Number: Report Date:	MSD Recovery %Recovery Qual Limits	ent ID: MS	75-125
E	Qual	1 0	
	MSD Recovery	.1708148-0	·
lysis trol	1%	Jple: L	
Matrix Spike Analysis Batch Quality Control	MSD Found	QC San	1
x Spi ch Qu	Qual	52-3	
Matrix Batcl	MS MSD %Recovery Qual Found	ch ID: WG9869	80
	MS Found	QC Batt	50
	MS Added	nple(s): 01-08	10
WINDCHIME BEA99-2252	Native Sample	Lab Associated sar	42
Project Name: Project Number:	Parameter	Total Metals - Mansfield Lab Associated sample(s): 01-08 QC Batch ID: WG986952-3 QC Sample: L1708148-01 Client ID: MS Sample	Sodium, Total

: L1708191 : 03/23/17	RPD Limits le	8	ALPHA
Lab Number: Report Date:	Qual DUP Samp		
ъ т	RPD Client ID:		
Sis	Units 1708148-01	liga m	
Lab Duplicate Analysis Batch Quality Control	ative Sample Duplicate Sample Units RPD Qual R QC Batch ID: WG986952-4 QC Sample: L1708148-01 Client ID: DUP Sample	4	
		4	
Project Name: WINDCHIME Project Number: BEA99-2252	Parameter N: Total Metals - Mansfield Lab Associated sample(s): 01-08	Sodium, Total	Page 17 of 41

INORGANICS & MISCELLANEOUS

L1708191

03/23/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab ID:	L1708191-01	Date Collected:	03/16/17 14:25
Client ID:	B-2R	Date Received:	03/17/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab)								
Chloride	53.		mg/l	1.0		1	-	03/20/17 20:00	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:35	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	03/17/17 21:09	121,4500NO3-F	CW
Nitrogen, Nitrate	1.34		mg/l	0.100	***	1	-	03/17/17 21:09	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	03/20/17 12:17	03/20/17 21:58	121,4500NH3-H	AT
Phosphorus, Total	ND		mg/l	0.010		1	03/20/17 11:00	03/20/17 15:56	121,4500P-E	SD
Phosphorus, Orthophosphate	0.009		mg/l	0.005		1	-	03/18/17 07:14	121,4500P-E	VB

L1708191

03/23/17

Lab Number:

Report Date:

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab ID:	L1708191-02	Date Collected:	03/16/17 13:50
Client ID:	MW-3R	Date Received:	03/17/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	orough Lab									
Chloride	58.		mg/l	1.0		1	-	03/20/17 19:16	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:36	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	_	03/17/17 21:10	121,4500NO3-F	CW
Nitrogen, Nitrate	0.594		mg/l	0.100	***	1	-	03/17/17 21:10	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	03/20/17 12:17	03/20/17 22:00	121,4500NH3-H	AT
Phosphorus, Total	ND		mg/l	0.010		1	03/20/17 11:00	03/20/17 15:57	121,4500P-E	SD
Phosphorus, Orthophosphate	0.009		mg/l	0.005		1	-	03/18/17 07:15	121,4500P-E	VB

L1708191

03/23/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab ID:	L1708191-03
Client ID:	MW-1
Sample Location:	MASHPEE, MA
Matrix:	Water

Date Collected:	03/16/17 12:15
Date Received:	03/17/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab			n en state e	na dalla.		an a Araba a			Santaintea
Chloride	64.		mg/l	1.0		1	-	03/20/17 19:16	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:36	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050	***	1	-	03/17/17 21:12	121,4500NO3-F	CW
Nitrogen, Nitrate	0.936		mg/l	0.100		1	-	03/17/17 21:12	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	03/20/17 12:17	03/20/17 22:01	121,4500NH3-H	AT
Phosphorus, Total	ND		mg/l	0.010		1	03/20/17 11:00	03/20/17 16:00	121,4500P-E	SD
Phosphorus, Orthophosphat	e 0.009		mg/l	0.005		1	-	03/18/17 07:16	121,4500P-E	VB

L1708191

03/23/17

Lab Number:

Report Date:

Project Name:	WINDCHIME
— · · · · ·	

Project Number: BEA99-2252

Lab ID:	L1708191-04
Client ID:	MW-2
Sample Location:	MASHPEE, MA
Matrix:	Water

Date Collected:	03/16/17 13:15
Date Received:	03/17/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westt	orough Lab)								
Chloride	47.		mg/l	1.0		1	-	03/20/17 19:17	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:37	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	03/17/17 21:13	121,4500NO3-F	CW
Nitrogen, Nitrate	9.05		mg/l	0.500		5	-	03/17/17 22:07	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	ND		mg/l	0.600		2	03/20/17 12:17	03/20/17 22:05	121,4500NH3-H	AT
Phosphorus, Total	1.43		mg/l	0.050		5	03/20/17 11:00	03/20/17 16:29	121,4500P-E	SD
Phosphorus, Orthophosphate	1.41		mg/l	0.010		2		03/18/17 07:16	121,4500P-E	VB

L1708191

03/23/17

Lab Number:

Report Date:

Project Name:	WINDCHIME
Project Number:	BEA99-2252

Lab ID:	L1708191-05	Date Collected:	03/16/17 12:40
Client ID:	MW-4	Date Received:	03/17/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat			Anternational		NA NA NA NA	nan ala		e a calificación de la	 Bangaritan
Chloride	57.		mg/l	1.0		1	-	03/20/17 19:18	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:41	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	03/17/17 21:14	121,4500NO3-F	CW
Nitrogen, Nitrate	0.952		mg/l	0.100		1	-	03/17/17 22:09	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	03/20/17 12:17	03/20/17 22:05	121,4500NH3-H	AT
Phosphorus, Total	ND		mg/l	0.010		1	03/20/17 11:00	03/20/17 16:02	121,4500P-E	SD
Phosphorus, Orthophosphate	0.005		mg/l	0.005		1	-	03/18/17 07:17	121,4500P-E	VB

L1708191

03/23/17

Lab Number:

Report Date:

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab ID:	L1708191-06	Date Collected:	03/16/17 09:30
Client ID:	PZ-1R	Date Received:	03/17/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westi	borough Lat)								
Chloride	8.8		mg/l	1.0		1	-	03/20/17 19:19	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:42	121,4500NH3-BH	I AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	03/17/17 21:16	121,4500NO3-F	CW
Nitrogen, Nitrate	ND		mg/l	0.100		1	-	03/17/17 21:16	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	1.20		mg/l	0.300		1	03/20/17 12:17	03/20/17 22:06	121,4500NH3-H	AT
Phosphorus, Total	2.99		mg/i	0.050		5	03/20/17 11:00	03/20/17 16:30	121,4500P-E	SD
Phosphorus, Orthophosphate	0.022		mg/l ·	0.005		1		03/18/17 07:18	121,4500P-E	VB

L1708191

03/23/17

Lab Number:

Report Date:

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab ID:	L1708191-07	Date Collected:	03/16/17 10:30
Client ID:	PZ-2R	Date Received:	03/17/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab	nd Silter								
Chloride	79.		mg/l	1.0		1	-	03/20/17 19:20	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:42	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	03/17/17 21:21	121,4500NO3-F	CW
Nitrogen, Nitrate	9.72		mg/l	0.500		5	-	03/17/17 22:11	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	1.96		mg/l	0.600		2	03/20/17 12:17	03/20/17 22:07	121,4500NH3-H	AT
Phosphorus, Total	2.05		mg/l	0.050		5	03/20/17 11:00	03/20/17 16:31	121,4500P-E	SD
Phosphorus, Orthophospha	ite 1.20		mg/l	0.010		2	-	03/18/17 07:18	121,4500P-E	VB

Page 26 of 41

Project Name: WINDCHIME Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID: Client ID:	L1708191-08 PZ-3R	Date Collected: Date Received:	03/16/17 10:15 03/17/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westt	orough Lat)								
Chloride	15.		mg/l	1.0		1	-	03/20/17 19:20	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:43	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	03/17/17 21:22	121,4500NO3-F	CW
Nitrogen, Nitrate	0.328		mg/l	0.100		1	-	03/17/17 22:13	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	0.424		mg/l	0.300		1	03/20/17 12:17	03/20/17 22:08	121,4500NH3-H	AT
Phosphorus, Total	13.8		mg/l	0.250		25	03/20/17 11:00	03/20/17 16:51	121,4500P-E	SD
Phosphorus, Orthophosphate	0.137		mg/l	0.005		1	-	03/18/17 07:19	121,4500P-E	VB

Lab Number: L1708191 Report Date:

03/23/17

L1708191

03/23/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab ID:	L1708191-09	Date Collected:	03/16/17 09:40
Client ID:	SW-1	Date Received:	03/17/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)	- Setteration				andra see to.	e a case sector		y aveza
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:44	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	03/17/17 21:23	121,4500NO3-F	CW
Nitrogen, Nitrate	0.440		mg/l	0.100		1	-	03/17/17 21:23	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	0.345		mg/l	0.300		1	03/20/17 12:17	03/20/17 22:09	121,4500NH3-H	AT
Phosphorus, Total	0.024		mg/l	0.010		1	03/20/17 11:00	03/20/17 16:07	121,4500P-E	SD
Phosphorus, Orthophosphate	0.006		mg/l	0.005		1	-	03/18/17 07:23	121,4500P-E	VB

Serial_No:03231719:19

Lab Number:	L1708191
Report Date:	03/23/17

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab ID:	L1708191-10
Client ID:	SW-2
Sample Location:	MASHPEE, MA
Matrix:	Water

Date Collected:	03/16/17 10:25
Date Received:	03/17/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat)								
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:45	121,4500NH3-BH	I AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	03/17/17 21:25	121,4500NO3-F	CW
Nitrogen, Nitrate	5.79		mg/l	0.100		1	-	03/17/17 21:25	121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	1.91		mg/l	0.600		2	03/20/17 12:17	03/20/17 22:10	121,4500NH3-H	AT
Phosphorus, Total	0.560		mg/l	0.010		1	03/20/17 11:00	03/20/17 16:08	121,4500P-E	SD
Phosphorus, Orthophosphate	0.096		mg/l	0.005		1	•	03/18/17 07:24	121,4500P-E	VB

Serial_No:03231719:19

L1708191

03/23/17

Lab Number:

Report Date:

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab ID:	L1708191-11	Date Collected:	03/16/17 10:45
Client ID:	SW-3	Date Received:	03/17/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		•

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab						ing station and a			Katasaka
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/20/17 12:02	03/20/17 22:46	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050	•••	1	-	03/17/17 21:26	121,4500NO3-F	CW
Nitrogen, Nitrate	0.551		mg/l	0.100		1	_		121,4500NO3-F	CW
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	03/20/17 12:17		121,4500NH3-H	AT
Phosphorus, Total	0.064		mg/l	0.010		1	03/20/17 11:00	03/20/17 16:09	121,4500P-E	SD
Phosphorus, Orthophosphat	e 0.006		mg/l	0.005	****	1	-	03/18/17 07:26	121,4500P-E	VB

Project Name:WINDCHIMEProject Number:BEA99-2252

 Lab Number:
 L1708191

 Report Date:
 03/23/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
			11 Po	tch: \N/	3986274-1				
General Chemistry - West Nitrogen, Nitrate	borough Lab for sam	mg/l	0.100		1	-	03/17/17 19:26	121,4500NO3-I	F CW
General Chemistry - Wes	borough Lab for san	nple(s): 0 [^]	1-11 Ba	tch: W	G986279-1				
Nitrogen, Nitrite	ND	mg/l	0.050		1	-	03/17/17 19:29	121,4500NO3-	F CW
General Chemistry - Wes	tborough Lab for san	nple(s): 0 [.]	1-11 Ba	atch: W	G986378-1			404 4500D E	VB
Phosphorus, Orthophosphate	ND	mg/l	0,005		1	-	03/18/17 07:14	121,4500P-E	۷D
General Chemistry - Wes	tborough Lab for sar	nple(s): 0	1-11 Ba	atch: W	G986612-1				
Phosphorus, Total	ND	mg/l	0.010		1	03/20/17 11:00	03/20/17 14:47	121,4500P-E	SD
General Chemistry - Wes	thorough Lab for sar	nple(s): 0	1-11 Ba	atch: W	G986692-1				
Nitrogen, Total Kjeldahl	ND	mg/l	0.300		1	03/20/17 12:17	03/20/17 21:45	5 121,4500NH3-	-H AT
General Chemistry - Wes	thorough Lab for sat	mple(s): 0	1-11 B	atch: M	/G986693-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	03/20/17 12:02	03/20/17 22:1	3 121,4500NH3-	BH AT
General Chemistry - Wes	sthorough Lab for sal	mple(s): 0	1-08 B	atch: W	/G986747-1				
Chloride	ND	mg/l	1.0		1	-	03/20/17 18:5	5 121,4500CL-	E ML

Project Name: WINDCHIME Project Number: BEA99-2252		Lab Control Sample Analysis Batch Quality Control	. <u>s</u>	Lab Number: Report Date:	L1708191 03/23/17
Parameter	LCS %Recovery Qual	LCSD %Recovery Qual L	%Recovery Limits E		
General Chemistry - Westborough Lab Associated sample(s): 01-11	Lab Associated sample(s): 01-11	3274-2		u dual	
Nitrogen, Nitrate	1		90-110	1 1 1 1 1 1 1 1	
General Chemistry - Westborough Lab Associated sample(s): 01-11	Lab Associated sample(s): 01-11	Batch: WG986279-2			
Nitrogen, Nitrite	103	о	90-110		
General Chemistry - Westborough Lab Associated sample(s): 01-11 Phosphorus, Orthophosphate	orough Lab Associated sample(s): 01-11 97	Batch: WG986378-2	90-110		
General Chemistry - Westborough Lab Associated sample(Phosphorus, Total	-ab Associated sample(s): 01-11 101	Batch: WG986612-2	80-120		
General Chemistry - Westborough Lab Associated sample(Nitrogen, Total Kjeldahl	ab Associated sample(s): 01-11 100	Batch: WG986692-2	78-122		
General Chemistry - Westborough Lab Associated sample(s): 01-11 ^{Nitrogen, Ammonia}		Batch: WG986693-2	80-120		
General Chemistry - Westborough Lab Associated sample(s): 01-08 ^{Chloride}		Batch: WG986747-2	90-110		

Page 31 of 41

ALPHA

Serial_No:03231719:19

Project Name: Project Number:	WINDCHIME BEA99-2252			Matriy Batc	Matrix Spike Analysis Batch Quality Control	ysis rol	Lab Number: Report Date:	: L1708191 : 03/23/17	3191 /17
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westborough Lab Associated sampl	estborough Lab Asso	ociated samp	ole(s): 01-11	QC Batch ID:	QC Batch ID: WG986274-4	QC Sample: L1708065-29	1.1993	Client ID: MS Sample	nple
Nitrogen, Nitrate	1.0.1.1.2.4 0.124	4	4.02	67	des and the state of the state	den die een oorse aande een de	83-113	na se la contra de l I	17
General Chemistry - Westborough Lab Associated sample(s): 01-11	estborough Lab Asso	ociated samp	ole(s): 01-11	QC Batch ID:	QC Batch ID: WG986279-4	QC Sample: L1708065-29 Client ID: MS Sample	065-29 Clier	it ID: MS Sar	nple
Nitrogen, Nitrite			3.95	66			80-120		20
General Chemistry - Westborough Lab Associated sampl	estborough Lab Asso	ociated samp	ole(s): 01-11	QC Batch ID:	QC Batch ID: WG986378-3	QC Sample: L1708191-08 Client ID: PZ-3R	191-08 Clier	it ID: PZ-3R	
Phosphorus, Orthophosphate	ate 0.137	0.5	0.620	97	na fan an fan fan fan fan fan fan fan fa		80-120	for a contract of the characteristic structure and the second structure of the second structure stru	20
General Chemistry - Westborough Lab Associated sample(s): 01-11	estborough Lab Asso	ociated samp	ole(s): 01-11	QC Batch ID:	QC Batch ID: WG986612-4	QC Sample: L1708191-02 Client ID: MW-3R	191-02 Clier	nt ID: MW-3R	
Phosphorus, Total	đ	0.5	0.516	103			75-125	ſ	20
General Chemistry - Westborough Lab Associated sampl	estborough Lab Asso	ociated samp	ole(s): 01-11	QC Batch ID:	QC Batch ID: WG986692-4	QC Sample: L1708191-01 Client ID: B-2R	191-01 Clier	it ID: B-2R	
Nitrogen, Total Kjeldahl	QN	8	7.30	91	a de la constante de la consta		77-111	t .	24
General Chemistry - Westborough Lab Associated sampl	estborough Lab Asso	ociated samp	ole(s): 01-11	QC Batch ID:	QC Batch ID: WG986693-4	QC Sample: L1708144-02 Client ID: MS Sample	144-02 Clier	nt ID: MS Sar	nple
Nitrogen, Ammonia	1.33	4	5.31	100			80-120	ſ	20
General Chemistry - Westborough Lab Associated sample(s): 01-08	estborough Lab Asso	ociated samp	ole(s): 01-08		QC Batch ID: WG986747-4	QC Sample: L1708191-01		Client ID: B-2R	
Chloride	53	20	70	85	•	ſ	58-140	1	7

Serial_No:03231719:19

Page 32 of 41

	WINDCHIME	Lab Duplicate Analysis Batch Quality Control	lalysis ^{trol}	La La	Lab Number:	L1708191
Project Number: E	BEA99-2252			Ŗ	Report Date:	03/23/17
Parameter	Native Sample	mple Duplicate Sample	le Units	RPD	Qual	RPD Limits
General Chemistry - Westt	General Chemistry - Westborough Lab Associated sample(s): 01-11	QC Batch ID: WG986274-3 QC Sample: L1708065-29 Client ID: DUP Sample	QC Sample: I	1708065-29	Client ID: DL	JP Sample
Nitrogen, Nitrate	0.124	0.126	mg/l	.		17
General Chemistry - Westt	General Chemistry - Westborough Lab Associated sample(s): 01-11	QC Batch ID: WG986279-3 QC Sample: L1708065-29 Client ID: DUP Sample	QC Sample: L	1708065-29 (Client ID: DL	JP Sample
Nitrogen, Nitrite		QN	mg/l	NC		20
General Chemistry - Westt	General Chemistry - Westborough Lab Associated sample(s): 01-11	QC Batch ID: WG986378-4	QC Sample: L1708191-01 Client ID:	1708191-01	Client ID: B-2R	2R
Phosphorus, Orthophosphate	0.009	0.009	l/gm	0		50
General Chemistry - Westt	General Chemistry - Westborough Lab Associated sample(s): 01-11	QC Batch ID: WG986612-3 QC Sample: L1708059-01 Client ID: DUP Sample	QC Sample: I	1708059-01	Client ID: DL	JP Sample
Phosphorus, Total	7.46	7.33	mg/l	Ν		50
General Chemistry - Westt	General Chemistry - Westborough Lab Associated sample(s): 01-11	QC Batch ID: WG986692-3	QC Sample: L1708191-01 Client ID: B-2R	1708191-01 (Client ID: B-	2 R
Nitrogen, Total Kjeldahl	Q	QN	l/gm	NC		24
General Chemistry - Westt	General Chemistry - Westborough Lab Associated sample(s): 01-11	01-11 QC Batch ID: WG986693-3	QC Sample: L1708144-02 Client ID: DUP Sample	.1708144-02 (Client ID: DL	JP Sample
Nitrogen, Ammonia	1.33	1.29	l/gm	3		20
General Chemistry - Westt	General Chemistry - Westborough Lab Associated sample(s): 01-08	QC Batch ID: WG986747-3	QC Sample: L1708191-01 Client ID: B-2R	1708191-01	Client ID: B-	2 R
Chloride	23	53	mg/l	0		. 7

Page 33 of 41

ALPHA

Serial_No:03231719:19

Lab Number: L1708191

Report Date: 03/23/17

Project Name: WINDCHIME

Project Number: BEA99-2252

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Absent

Cooler Information Custody Seal Cooler

A

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1708191-01A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),CL- 4500(28),NO3-4500(2),NO2- 4500NO3(2)
L1708191-01B	Plastic 250ml HNO3 preserved	А	<2	3.8	Y	Absent	NA-TI(180)
L1708191-01C	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-02A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),CL- 4500(28),NO3-4500(2),NO2- 4500NO3(2)
L1708191-02B	Plastic 250ml HNO3 preserved	Α	<2	3.8	Y	Absent	NA-TI(180)
L1708191-02C	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-03A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),CL- 4500(28),NO3-4500(2),NO2- 4500NO3(2)
L1708191-03B	Plastic 250ml HNO3 preserved	А	<2	3.8	Y	Absent	NA-TI(180)
L1708191-03C	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-04A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),CL- 4500(28),NO3-4500(2),NO2- 4500NO3(2)
L1708191-04B	Plastic 250ml HNO3 preserved	А	<2	3.8	Y	Absent	NA-TI(180)
L1708191-04C	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-05A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),CL- 4500(28),NO3-4500(2),NO2- 4500NO3(2)
L1708191-05B	Plastic 250ml HNO3 preserved	А	<2	3.8	Y	Absent	NA-TI(180)
L1708191-05C	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-06A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),CL- 4500(28),NO3-4500(2),NO2- 4500NO3(2)
L1708191-06B	Plastic 250ml HNO3 preserved	А	<2	3.8	Y	Absent	NA-TI(180)
L1708191-06C	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-07A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),CL- 4500(28),NO3-4500(2),NO2- 4500NO3(2)
L1708191-07B	Plastic 250ml HNO3 preserved	А	<2	3.8	Y	Absent	NA-TI(180)

Project Name: WINDCHIME Project Number: BEA99-2252

Serial_No:03231719:19

Lab Number: L1708191 Report Date: 03/23/17

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1708191-07C	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-08A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),CL- 4500(28),NO3-4500(2),NO2- 4500NO3(2)
L1708191-08B	Plastic 250ml HNO3 preserved	А	<2	3.8	Y	Absent	NA-TI(180)
L1708191-08C	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-09A	Plastic 250ml unpreserved	А	7	3.8	Y	Absent	OPHOS-4500(2),NO3- 4500(2),NO2-4500NO3(2)
L1708191-09B	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-10A	Plastic 250ml unpreserved	A	7	3.8	Y	Absent	OPHOS-4500(2),NO3- 4500(2),NO2-4500NO3(2)
L1708191-10B	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)
L1708191-11A	Plastic 250ml unpreserved	А	7	3.8	Y	Absent	OPHOS-4500(2),NO3- 4500(2),NO2-4500NO3(2)
L1708191-11B	Plastic 500ml H2SO4 preserved	А	<2	3.8	Y	Absent	TKN-4500(28),TPHOS- 4500(28),NH3-4500(28)

Project Name: WINDCHIME

Project Number: BEA99-2252

 Lab Number:
 L1708191

 Report Date:
 03/23/17

GLOSSARY

Acronyms

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated EDL values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). EPA Environmental Protection Agency - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LCS analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Refer to LCS - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LFB analytes or a material containing known and verified amounts of analytes. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated MDL values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for MS which an independent estimate of target analyte concentration is available. MSD - Matrix Spike Sample Duplicate: Refer to MS. - Not Applicable. NA - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's NC reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NP - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the SRM associated field samples. STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315. - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associa

Report Format: Data Usability Report

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab Number: L1708191

Report Date: 03/23/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Lab Number: L1708191 Report Date: 03/23/17

Project Name: WINDCHIME Project Number: BEA99-2252

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:03231719:19 ID No.:**17873** Revision 10 Published Date: 1/16/2017 11:00:05 AM <u>Page 1 of 1</u>

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1, 4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1, 4-Diphenylhydrazine. EPA 6860: NPW and SCM: Perchlorate EPA 9010: NPW and SCM: Amenable Cyanide Distillation EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon Mansfield Facility SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophera, 1 The following analytes are included in our Massachusetts DEP Scope of Accreditation Westborough Facility: Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colliert-QT,SM9222D. Non-Potable Water SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-. 06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, E SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endos Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E. Mansfield Facility: Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg. Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: AI, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

		of the second			101000
CHAIN OF CUSTODY		Date Rec'd in Lab:	V 11/17		103191
ALPHA	Project Information	Report Information		Billing Information	
2			MEMAIL	X Same as Client info	PO #: 2252
Westborough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-822-9300	Project Name: Windchime		Add'I Deliverables		
FAX: 508-898-9193 FAX: 508-822-3288		Regulatory Reg	Regulatory Requirements/Report Limits		
Client Information	Project Location: Mashpee, MA	State/Fed Program		Criteria	
Client: Bennett Environmental Associates	Project #: BEA99-2252				
Address: 1573 Main Street / P.O. Box 1743	Project Manager: David C. Bennett				
Brewster, MA 02631	ALPHA Quote #:				
Phone: 508-896-1706	Turn-Around Time	ANAL VEIS			L (
Fax: 508-896-5109	Standard 🗌 Rush (onLy IF PRE-APPROVED)	AINALI 313			SAMPLE HANDLING
Email: sfarrenkopf@bennett-ea.com					Filtration
These samples have been Previously analyzed by Alpha	Due Date: Time:				Not Needed #
Other Project Specific Requirements/Comments/Detection Limits:	s/Detection Limits:				
-		SC			
					(Please specify E below) E
ALPHA Lab ID Sample ID	Collection Sample Sampler's	'EHI	Ð		- 2 _{2,18}
(Lab Use Only)	Date Time Matrix Initials	Sodiun TKN, h	Chlorid		Sample Specific Comments
D & M A LA L R.2R	CIC-J Ma SE: E HIAIR				A A
	5.5				4
-	1113315				4
5	1:15				f
	01:01				4
,006 PZ-1R	3/16/17 14:30 GW CCB				2
(<i>N</i>) PZ-2R	10:3				er) *
, ald PZ-3R	3/14/17/10:15 GW (CV)				IJ
					Ç
					12 30
	, Container Type	a. a.	, , ,	•)
	A Preservative	0 0 0	- - -		Please print clearly, legibly and completely Samples can
	W Relingdished By:	Date/Time	Received By:		not be logged in and turmaround time clock will not
	at 24 and a	34617 4W	BET Fride	J1:X 4.191-E	start until any ambiguites are resolved All samples
FORM NO: C1-OV(1-N-U) (NY: 23-NDF-03)	(DEP) V C III V AN	2017/17 15:05	Dde Maeto At	C. 3/10/17 15:05	Alpha's Payment Terms
Page 40 of 41	Kol Marth AN	and sites	THUT YOUNG THE AND A		

Serial_No:03231719:19

Filter : 508-5610 Tarty contained in three: 508-5610 Anti-rispin contained in three: 508-5610 Contained in three: 508-5610 <thcontained in<br="">three: 508-5610</thcontained>	Matching Projection Westborugh, MA Wassford, MA Westborugh, MA Mansfeld, MA TEL: 508-898-9133 FAX: 508-8322-3388 FAX: 508-898-9133 FAX: 508-8322-3388 Project FAX: 508-8322-3388 Client Information Project Client: Bennett Environmental Associates Project Address: 1573 Main Street / P.O. Box 1743 Project Rrawsfer, MA 02634 Annie	Project Information PAGE 2 OF 2 MA Project Information 22-9300 Project Name: Windchime 22-3286 Project Location: Mashpee, MA 22-3286 Project Location: Mashpee, MA Ial Associates Project #: BEA99-2252 Project Manager. David C. Bennett Manager. David C. Bennett	Report Information FAX ADEX Regulatory Require State/Fed Program	Report Information Data Deliverables FAX Etwall FAX Ata Deliverables Ata Ata Deliverables Ata Ata Deliverables Ata Ata Ata Ata	ALPHA Job #: (170 \$19 01 PO# 2252
□ Rush torut if PrecAPPROVED. Time: ••••••••••••••••••••••••••••••••••••	ALPH	ALPHA Quote #: Turn-Around Time	ANALYSIS			
Date Time Sample	ea.com ea.com usy analyzed by Apha Due D quirements/Comments/Detect		S			ANDLING reded do fon do do
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample ID	ollection Sample Time Matrix	·····			¢.
51 11, 11 10, 45 Sw 15, 10 1		$\frac{1}{100} \frac{1}{100} \frac{1}$	├			
M_{1} M_{2} M_{1} M_{2} M_{1}		111 10:45 sw (5.1				
Subscription Description Received By: Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Received By: Date/Time Date/Time Received By: Date/Time Date/Time Received By: Date/Time Date/Time Received By: Date/Time Received By: Date/Time Date/Time Received By: Date/Time Date/Time Received By: Date/Time Date/Time Received By: Date/Time Date/Ti						
Matrix						
Container Type P -						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Market By. Bateline Received By: DaterTime Market 3/1/17 15:05 Ron Mergeto AK RITIN 15:45						Please print clearly, legibly and completely. Samples can not be loored in and
			Date/Time ゆイ子 イ・15 117 15105	Received By: BE H. Fr. J.R.	Date/Time 3-16-17-4-15 M 2171/10 15 64	Intransuration cock will not etart until any ambiguites are resolved. All samples submitted are subject to Aloba's Pawment Ferms

ANALYTICAL REPORT

Lab Number:	L1722512
Client:	Bennett Environmental Associates
	1573 Main Street
	Brewster, MA 02631
ATTN:	David Bennett
Phone:	(508) 896-1706
Project Name:	WINDCHIME
Project Number:	BEA99-2252
Report Date:	07/10/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: Project Number:	WINDCHIME BEA99-2252			Lab Number: Report Date:	L1722512 07/10/17
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1722512-01	B-2R	WATER	MASHPEE, MA	06/30/17 15:40	06/30/17
L1722512-02	MW-3R	WATER	MASHPEE, MA	06/30/17 15:15	06/30/17
L1722512-03	MW-1	WATER	MASHPEE, MA	06/30/17 13:10	06/30/17
L1722512-04	MW-2	WATER	MASHPEE, MA	06/30/17 14:15	06/30/17
L1722512-05	MW-4	WATER	MASHPEE, MA	06/30/17 13:45	06/30/17
L1722512-06	PZ-1R	WATER	MASHPEE, MA	06/30/17 10:50	06/30/17
L1722512-07	PZ-2R	WATER	MASHPEE, MA	06/30/17 12:10	06/30/17
L1722512-08	PZ-3R	WATER	MASHPEE, MA	06/30/17 12:00	06/30/17
L1722512-09	SW-1	WATER	MASHPEE, MA	06/30/17 10:55	06/30/17
L1722512-10	SW-2	WATER	MASHPEE, MA	06/30/17 12:00	06/30/17
L1722512-11	SW-3	WATER	MASHPEE, MA	06/30/17 12:40	06/30/17

Project Name: Project Number:

Page 2 of 42

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1722512 Report Date: 07/10/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1722512 Report Date: 07/10/17

Case Narrative (continued)

Phosphorus, Total

L1722512-01, -02, -03 and -05: The Orthophosphate result is slightly higher than the Total Phosphorus result; however, the sample result is less than five times the reporting limit. Therefore, no further action was taken.

Nitrogen, Nitrate

L1722512-08: The sample has an elevated detection limit due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Compos Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

Date: 07/10/17

METALS

sult I Lab	Qualifier	Units	RL	MDL			Analyzed	Method	Method	Analys
sult	Qualifier	Units	RL	MDL		Flepaleu	Analyzed	Method	wethod	Analys
					Dilution Factor	Date Prepared	Date	Prep	Analytical	
Vater	·					, loid i i	00.		comed	
MASH	PEE, MA					Field Pr	en:	Not Sn	ecified	
3-2R						Date Re	eceived:	06/30/ [.]	17	
1722	512-01					Date Co	ollected:	06/30/ ⁻	17 15:40	
			SAMP	LE RES	ULTS					
BEA99	9-2252					Report	Date:	07/10/	17	
WIND	CHIME					Lab Nu	mber:	L1722	512	
	3EA99 1722 9-2R	WINDCHIME BEA99-2252 1722512-01 B-2R MASHPEE, MA	3EA99-2252 1722512-01 3-2R	BEA99-2252 SAMP 1722512-01 B-2R	SAMPLE RES 1722512-01 3-2R	SAMPLE RESULTS 1722512-01 -2R	BEA99-2252 Report SAMPLE RESULTS 1722512-01 Date Co B-2R Date Re	BEA99-2252 Report Date: SAMPLE RESULTS 1722512-01 Date Collected: B-2R Date Received:	BEA99-2252 Report Date: 07/10/ SAMPLE RESULTS 1722512-01 Date Collected: 06/30/ B-2R Date Received: 06/30/	BEA99-2252 Report Date: 07/10/17 SAMPLE RESULTS Date Collected: 06/30/17 15:40 8-2R Date Received: 06/30/17

Total Metals - Mans Sodium, Total	42.1		mg/l	2.00		1	07/07/17 16:0	0 07/08/17 11:0	0 EPA 3005A	1,6010C	AM
Parameter	Result	Qualifier	Units	RL.	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Matrix:	Water										
Sample Location:	MASH	IPEE, MA					Field Pr	ep:	Not Spe	ecified	
Client ID:	MW-3	R					Date Re	eceived:	06/30/1	7	
Lab ID:	L1722	512-02		SAMPI	_E RES	ULTS	Date Co	ollected:	06/30/1	7 15:15	
Project Number:	BEA9	9-2252					Report	Date:	07/10/1	1	
Project Name:	WIND	CHIME					Lab Nu		L17225		

ALPHA

Project Name:	WINE	CHIME					Lab Nu	ımber:	L1722	512	
Project Number:	BEAS	9-2252					Report	Date:	07/10/	17	
				SAMPI	LE RES	ULTS					
Lab ID:	L1722	2512-03					Date Co	ollected:	06/30/ [,]	17 13:10	
Client ID:	MW-1						Date R	eceived:	06/30/ [,]	17	
Sample Location:	MASH	IPEE, MA					Field Pi	rep:	Not Sp	ecified	
Matrix:	Water							- 1		oomou	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab							약 소설을 받는 것.	e Nêstane û ke		ere and
Sodium, Total	44.6		mg/l	2.00		1		0 07/08/17 11:0			AM

Sodium, Total	26.4		mg/l	2.00		1	07/07/17 16:0	0 07/08/17 11:0	9 EPA 3005A	1,6010C	АМ
Parameter Total Metals - Mans	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Method	Analyst
Sample Location: Matrix:	MASH Water	IPEE, MA					Field Pr		Not Spe	Analytical	
Lab ID: Client ID:	L1722 MW-2	512-04		SAWP	_E KE3	ULIS	Date Co Date Re	eceived:	06/30/1 06/30/1	7	
Project Number:	BEA9	9-2252		CAMDI	_E RES		Report	Date:	07/10/17	1	
Project Name:	WIND	CHIME					Lab Nu		L17225		

Sodium, Total	42.0	······································	mg/l	2.00		<u>1</u>		0 07/08/17 11:52		1,6010C	AM
Total Metals - Mans	field Lab						Ni se			vertien hunderen	- ar sidara
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Sample Location: Matrix:	WASF	HPEE, MA					Field Pr	rep:	Not Sp	ecified	
Client ID:	MW-4						Date Re	eceived:	06/30/1	7	
Lab ID:		2512-05					Date Co	ollected:	06/30/1	7 13:45	
				SAMP	LE RES	ULTS					
Project Number:	BEA9	9-2252					Report	Date:	07/10/1	7	
Project Name:	WINE	OCHIME					Lab Nu	umber:	L17225	512	

Project Name: Project Number:		CHIME 9-2252					Lab Nu Report		L172257 07/10/17		
				SAMPI	E RES	ULTS					
Lab ID:	L1722	512-06					Date Co	ollected:	06/30/1	7 10:50	
Client ID:	PZ-1R	ξ					Date Re	eceived:	06/30/1	7	
Sample Location:	MASH	IPEE, MA					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water	-									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Sodium, Total	7.62		mg/l	2.00		1	07/07/17 16:0	0 07/08/17 11:56	5 EPA 3005A	1,6010C	AM

Sodium, Total	40.8		mg/l	2.00	er vers Marei 			0 07/08/17 12:00			AM
Total Metals - Mans	field Lab					an an Angles	en stratege and strategicale	and the state of the state of the	e og Navega av det her	energi e de Sectificação do	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Sample Location: Matrix:	MASF Water	IPEE, MA					Field Pr	rep:	Not Sp	pecified	
Client ID:	PZ-2F	•						eceived:	06/30/		
Lab ID:	L1722	2512-07		SAMP	LE RES	OLTS	Date C	ollected:	06/20/	17 12:10	
Project Number:	BEA9	9-2252		0.1 115			Report	Date:	07/10/	17	
Project Name:		CHIME					Lab Nu	ımber:	L1722	512	

Project Name:		CHIME					Lab Nu Report		L17225 ² 07/10/11	• –	
Project Number:	BEA9	9-2252		SAMPI	_E RES	ULTS	Report	Date.	01/10/1	ſ	
Lab ID: Client ID:	PZ-3R	•					Date Co Date Re Field Pr	eceived:	06/30/1 [*] 06/30/1 [*] Not Spe	7	
Sample Location: Matrix:	MASH Water	IPEE, MA					Field Pr	ep.	·		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Parameter Total Metals - Mans			Units	RL	MDL	Factor	Flepaleu	Allalyzeu			Ana
Sodium, Total	8.51		mg/l	2.00		1	07/07/17 16:0	0 07/08/17 12:1	7 EPA 3005A	1,6010C	AM

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1722512 Report Date: 07/10/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method Analyst
Total Metals - Man	sfield Lab for sample(s):	01-08 B	atch: W	G10205	58-1		andre en andre en alter Antonio en antonio en alterativa	
Sodium, Total	ND	mg/l	2.00		1	07/07/17 16:00	07/08/17 10:3	

Prep Information

Digestion Method: EPA 3005A

		Lat	Lab Control Sample Analysis	ample An	lalysis			1	
Project Name: WINDCHIME Project Number: BEA99-2252			Datch Qua			Lab N Repoi	Lab Number: Report Date:	L1722512 07/10/17	
Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample(s): 01-08 Batch: WG1020558-2	nple(s): 01-08 Batcl	h: WG102(0558-2						
Sodium, Total	105		,		80-120	ı			

Page 15 of 42

ALPHA

										1		
Project Name: Project Number:	WINDCHIME BEA99-2252			Matrix Batc	k Spik h Quali	Matrix Spike Analysis Batch Quality Control		Lab Number: Report Date:	mber: Date:	L1722512 07/10/17	2512 /17	
Parameter	Native Sample	MS Added	MS Found	MS %Recovery (Qual F	MSD Found	MSD %Recovery Qual	Recovery tual Limits		RPD Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample(s): 01-08	Lab Associated sam	ple(s): 01-08	QC Bat	QC Batch ID: WG1020558-3		QC Samp	QC Sample: L1722512-01 Client ID: B-2R	Client IC	R-2R			
Sodium, Total	54.7	10	64.3	96				75-125	25 - 25 -		20	•
Page 16 of 42											Arena	

Project Name: Lab Dupplicate Arralysis Lab Number: L725/12 Project Name: Exact Quarky Control Report Date: 0///17 Project Name: Exact Quarky Control Native Sample Duplicate Sample 0///18 Project Name: Control Native Sample Duplicate Sample 0///18 Report Date: Cold Native Sample Duplicate Sample Units RPD Units RPD Satur, Total satur, Total sat 6.6 not 3 2 Report Date:			Serial_No:07101714:05	10
		Lab Duplicate Analysis Batch Quality Control	Lab Number: Report Date:	
	Parameter	Duplicate Sample	RPD Qual	
2 ¹ ² ² ² ² ²	Total Metals - Mansfield Lab Associated sample	ple(s): 01-08 QC Batch ID: WG1020558-4 QC Sample: L1		
		5 4.7 56.6	ngm	
Υ				
	Pare 17 of 42		LA HANNA	

Page 17 of 42

INORGANICS & MISCELLANEOUS

L1722512

07/10/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab ID:	L1722512-01	Date Collected:	06/30/17 15:40
Client ID:	B-2R	Date Received:	06/30/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	porough Lah									
Chloride	100	•	mg/l	5.0		5	-	07/06/17 18:33	121,4500CL-E	ML
	ND		mg/l	0.075		1	07/06/17 12:30	07/06/17 17:12	121,4500NH3-BH	JO
Nitrogen, Ammonia	ND		mg/l	0.050		1	-	07/01/17 01:42	121,4500NO3-F	MR
Nitrogen, Nitrite	1.69		mg/l	0.100		1	-	07/01/17 01:42	121,4500NO3-F	MR
Nitrogen, Nitrate	0.375		mg/l	0,300		1	07/06/17 15:00	07/07/17 14:56	121,4500NH3-H	JO
Nitrogen, Total Kjeldahl	0.375 ND		mg/l	0.010		1	07/05/17 11:15	07/06/17 09:54	121,4500P-E	SD
Phosphorus, Total Phosphorus, Orthophosphate	0.014		mg/l	0.005		1	-	07/01/17 01:54	121,4500P-E	KA

Field
Date
Date

Project Name: WINDCHIME Project Number: BEA99-2252

Serial_No:07101714:05

Lab Number: L1722512 **Report Date:** 07/10/17

Date Collected:	06/30/17 15:15
Date Received:	06/30/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL.	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab			a faranan.	Millio in t		na an a	teatil teachtrachaile	and a constraint and an	
Chloride	69.		mg/l	1.0			an an shutan an an an a	07/06/17 18:34	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/06/17 12:30		121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050		1			121,4500NO3-F	MR
Nitrogen, Nitrate	0.910		mg/l	0.100		1	-		121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	07/06/17 15:00	07/07/17 14:57	121,4500NH3-H	JO
Phosphorus, Total	ND		mg/l	0.010		1	07/05/17 11:15	07/06/17 09:58	121,4500P-E	SD
Phosphorus, Orthophosphate	0.012		mg/l	0.005		1	-	07/01/17 01:56	121,4500P-E	KA

L1722512

07/10/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab ID:	L1722512-03	Date Collected:	06/30/17 13:10	
Client ID:	MW-1	Date Received:	06/30/17	
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified	
Matrix:	Water			

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
orough Lat)								
		mg/l	1.0		1	-	07/06/17 17:41	121,4500CL-E	ML
		ma/l	0.075		1	07/06/17 12:30	07/06/17 17:16	121,4500NH3-BH	JO
			0.050		1	-	07/01/17 01:53	121,4500NO3-F	MR
			0.100		1	-	07/01/17 01:53	121,4500NO3-F	MR
		<u> </u>		• • • • • • • • • • • • • • • • • • • •	1	07/06/17 10:57	07/06/17 17:51	121,4500NH3-H	JO
					1	07/05/17 11:15	07/06/17 09:59	121,4500P-E	SD
0.017		mg/l	0.005		1	-	07/01/17 01:57	121,4500P-E	KA
	72. ND 0.948 ND ND	oorough Lab 72. ND ND 0.948 ND ND	porough Lab 72. mg/l ND mg/l 0.948 mg/l ND mg/l ND mg/l	ncould data ncould data 72. mg/l 1.0 ND mg/l 0.075 ND mg/l 0.050 0.948 mg/l 0.100 ND mg/l 0.300 ND mg/l 0.300 ND mg/l 0.235	nestil dummer orne ne 72. mg/l 1.0 ND mg/l 0.075 ND mg/l 0.050 0.948 mg/l 0.100 ND mg/l 0.300 ND mg/l 0.300	Result Qualifier Units RL MDL Factor porough Lab 72. mg/l 1.0 1 ND mg/l 0.075 1 ND mg/l 0.050 1 0.948 mg/l 0.100 1 ND mg/l 0.300 1 ND mg/l 0.300 1	Result Qualifier Units RL MDL Factor Prepared porough Lab 72. mg/l 1.0 1 ND mg/l 0.075 1 07/06/17 12:30 ND mg/l 0.050 1 0.948 mg/l 0.100 1 ND mg/l 0.300 1 07/06/17 10:57 ND mg/l 0.300 1 07/06/17 10:57 ND mg/l 0.010 1 07/05/17 11:15	Result Qualifier Units RL MDL Factor Prepared Analyzed porough Lab 72. mg/l 1.0 1 - 07/06/17 17:41 ND mg/l 0.075 1 07/06/17 12:30 07/06/17 17:16 ND mg/l 0.050 1 - 07/01/17 01:53 0.948 mg/l 0.100 1 - 07/06/17 17:51 ND mg/l 0.300 1 07/06/17 10:57 07/06/17 17:51 ND mg/l 0.300 1 07/06/17 10:57 07/06/17 17:51 ND mg/l 0.300 1 07/06/17 10:57 07/06/17 09:59 ND mg/l 0.010 1 07/05/17 11:15 07/06/17 09:59 ND mg/l 0.010 1 07/05/17 11:15 07/06/17 09:59	Result Qualifier Units RL MDL Factor Prepared Analyzed Method porough Lab 72. mg/l 1.0 1 - 07/06/17 17:41 121,4500CL-E ND mg/l 0.075 1 07/06/17 12:30 07/06/17 17:16 121,4500NH3-BH ND mg/l 0.050 1 - 07/01/17 01:53 121,4500NO3-F 0.948 mg/l 0.100 1 - 07/06/17 17:51 121,4500NO3-F ND mg/l 0.300 1 07/06/17 10:53 121,4500NO3-F ND mg/l 0.100 1 07/06/17 10:57 121,4500NO3-F ND mg/l 0.300 1 07/06/17 10:57 121,4500NH3-H ND mg/l 0.300 1 07/06/17 10:57 121,4500NH3-H ND mg/l 0.010 1 07/05/17 11:15 07/06/17 09:59 121,4500P-E </td

Report Date: 07/10/17

SAMPLE RESULTS

Lab ID:	L1722512-04	Date Collected:	06/30/17 14:15
Client ID:	MW-2	Date Received:	06/30/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat		Harrister		ang papagala	ALEADA	-ANECONTRA-S	. Witten and the	lana mumuni awa	·: · · · · · ·
Chloride	34.		mg/l	1.0	••••	1	ne se substant de la composition de la Entre de la composition de la compositio	07/06/17 17:48	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/06/17 12:30		121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050		1	-		121,4500NO3-F	MR
Nitrogen, Nitrate	6.52		mg/l	0.100		1	••••••••••••••••••••••••••••••••••••••		121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	07/06/17 15:00	07/07/17 14:58		JO
Phosphorus, Total	1.56		mg/l	0.050		5		07/06/17 11:17	121,4500P-E	SD
Phosphorus, Orthophosphate	1.43		mg/l	0.010		2	-	07/01/17 01:58	121,4500P-E	KA

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab Number: L1722512

L1722512

07/10/17

Lab Number:

Report Date:

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab ID:	L1722512-05	Date Collected:	06/30/17 13:45
Client ID:	MW-4	Date Received:	06/30/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lat)								
Chloride	70.		mg/l	1.0		1	-	07/06/17 17:49	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/06/17 12:30	07/06/17 17:18	121,4500NH3-BH	I JO
Nitrogen, Nitrite	ND		mg/l	0.050		1		07/01/17 01:56	121,4500NO3-F	MR
Nitrogen, Nitrate	0.905		mg/l	0.100		1	_	07/01/17 01:56	121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	07/06/17 15:00	07/07/17 14:59	121,4500NH3-H	JO
Phosphorus, Total	ND		mg/l	0.010		1	07/05/17 11:15	07/06/17 10:05	121,4500P-E	SD
Phosphorus, Orthophosphate	0.010		mg/l	0.005		1	-	07/01/17 01:59	121,4500P-E	KA

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab ID:	L1722512-06
Client ID:	PZ-1R
Sample Location:	MASHPEE, MA
Matrix:	Water

Lab Number:	L1722512
Report Date:	07/10/17

Date Collected:	06/30/17 10:50
Date Received:	06/30/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab			re. here.		en an	and Maria Prog			e Ledebarr
Chloride	9.3		mg/l	1.0		1		07/06/17 17:49	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/06/17 12:30	07/06/17 17:18	121,4500NH3-BH	JO
Nitrogen, Nitrite	ND		mg/l	0.050		1		07/01/17 01:57	121,4500NO3-F	MR
Nitrogen, Nitrate	ND		mg/l	0.100		1	-	07/01/17 01:57	121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	1.51		mg/l	0.300		1	07/06/17 15:00	07/07/17 15:00	121,4500NH3-H	JO
Phosphorus, Total	1.10		mg/l	0.050		5		07/06/17 11:19	121,4500P-E	SD
Phosphorus, Orthophosphate	0.019		mg/l	0.005		1		07/01/17 02:00	121,4500P-E	KA

L1722512

07/10/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID: Client ID: Sample Location: Matrix:	L1722512-07 PZ-2R MASHPEE, MA Water	Date Collected: Date Received: Field Prep:	06/30/17 12:10 06/30/17 Not Specified
--	--	--	---

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl		. San de la sectore de la s	mall	1.0		1	_	07/06/17 17:50	121,4500CL-E	ML
Chloride	47.		mg/l				07/06/17 12:30	07/06/17 17:19	121,4500NH3-BH	JO
Nitrogen, Ammonia	ND		mg/l	0.075			07700/17 12.30			MR
Nitrogen, Nitrite	ND		mg/l	0.050		1			121,4500NO3-F	
	9.86		mg/l	0.500		5	-	07/01/17 02:36	121,4500NO3-F	MR
Nitrogen, Nitrate				0.600		2	07/06/17 15:00	07/07/17 15:01	121,4500NH3-H	JO
Nitrogen, Total Kjeldahl	3.28		mg/l			- 40		07/06/17 11:20		SD
Phosphorus, Total	2.45		mg/l	0.100	••••	10	07/05/17 11.15			1/ A
Phosphorus, Orthophosphate	1.48		mg/l	0.010		2	-	07/01/17 02:02	121,4500P-E	KA

1)2H

Field Prep:

Lab Number: L1722512

Report Date: 07/10/17

SAMPLE RESULTS

Date Collected:	06/30/17 12:00
Date Received:	06/30/17

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab				inte este Por	er strank	alian instances	ere a service de la composition de la c		
Chloride	8.6		mg/i	1.0		1		07/06/17 17:51	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075	•••	1	07/06/17 12:30	· · · · · · · · · · · · · · · · · · ·	121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050	••••••••••••••••••••••••••••••••••••••		01100/11 12.30		the second	
Nitrogen, Nitrate	ND		mg/l	0.250		۱ ۵ ۲			121,4500NO3-F	· · · · · · · · · · · · · · · ·
Nitrogon, Total Kield-bl			myn	0.250	••••	2.5		07/01/17 02:43	121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	1.41		mg/l	0.300		1	07/06/17 15:00	07/07/17 15:01	121,4500NH3-H	JO
Phosphorus, Total	4.90		mg/l	0.050		5				SD
Phosphorus, Orthophosphate	0.122	· · · · · · · · · · · · · · · · · · ·	mg/l	0.005		1	-	07/01/17 02:03	121,4500P-E	KA

Project Name: WINDCHIME Project Number: BEA99-2252

L1722512-08

PZ-3R

Water

Sample Location: MASHPEE, MA

Lab ID:

Matrix:

Client ID:

Serial_No:07101714:05

L1722512

07/10/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab ID: Client ID: Sample Location:	L1722512-09 SW-1 MASHPEE, MA Water	Date Collected: Date Received: Field Prep:	06/30/17 10:55 06/30/17 Not Specified
Matrix:	Valei		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	orough Lat	,								
		e de la ferrar en la service de la servi La service de la service de		0.075		1	07/06/17 12:30	07/06/17 17:24	121,4500NH3-BH	JO
Nitrogen, Ammonia	ND		mg/l	0.075	· · · · · · · · · · · · · · · · · · ·		01100/11 12:00			MR
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	07/01/17 02:01	121,4500NO3-F	
Nitrogen, Nitrate	0.317		mg/l	0.100		1	-	07/01/17 02:01	121,4500NO3-F	MR
			mall	0.300		1	07/06/17 15:00	07/07/17 15:05	121,4500NH3-H	JO
Nitrogen, Total Kjeldahl	ND		mg/l			· · · · · · · · · · · · · · · · · · ·				SD
Phosphorus, Total	0.018		mg/l	0.010		1	07/05/17 11:15	07/06/17 10:10		
Phosphorus, Orthophosphate	0.012		mg/l	0.005		1		07/01/17 02:04	121,4500P-E	KA

Project Name: WINDCHIME

Project Number: BEA99-2252

Serial_No:07101714:05

Lab Number: L1722512 Report Date: 07/10/17

Lab ID: Client ID: Sample Location: Matrix:	L1722512-10 SW-2 MASHPEE, MA Water	Date Collected: Date Received: Field Prep:	06/30/17 12:00 06/30/17 Not Specified
--	---	--	---

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat			N.N.S. 163 (C.S.	a an	Alteria	and the second	Ang Antoni Internet	t with which the state of the state of the	
Nitrogen, Ammonia	ND		mg/l	0.075	ه (یایهٔ کید میده) 	essi i i esci i i s 1		07/06/17 17:24	121,4500NH3-BH	OL F
Nitrogen, Nitrite	ND		ma/l	0.050	• • • • • • • • • • • • • • •	1	01100/11 12.00		the second design of the second	er er her an er er er
Nitrogen, Nitrate	0.859		ma/l	0.100		·····	····		121,4500NO3-F	
Nitrogen, Total Kjeldahl	1.27		ma/l	0.300			- 07/06/17 15:00		121,4500NO3-F	
Phosphorus, Total	0.516		ma/l	0.010					121,4500NH3-H	
Phosphorus, Orthophosphate	0 102	· · · · · · · · · · · · · · · · · · ·		0.005		······································	07/05/17 11:15		121,4500P-E	SD
,	0.102		mg/l	0.000	•••••	1	•	07/01/17 02:08	121,4500P-E	KA

L1722512

07/10/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab ID: Client ID: Sample Location:	L1722512-11 SW-3 MASHPEE, MA			ollected: eceived: rep:	06/30/17 12:40 06/30/17 Not Specified
Matrix:	Water				
		Dilution	Date	Date	Analytical

Parameter	Result	Qualifier	Units	RL	MDL.	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat)								
Nitrogen, Ammonia	ND	-,	mg/l	0.075		1	07/06/17 12:30	07/06/17 17:25	121,4500NH3-BH	JO
	ND		mg/l	0.050		1	-	07/01/17 02:04	121,4500NO3-F	MR
Nitrogen, Nitrite				0.100		1	_	07/01/17 02:04	121,4500NO3-F	MR
Nitrogen, Nitrate	0.182	· · · · · ·	mg/I				07/06/17 15:00	07/07/17 15:07	121,4500NH3-H	JO
Nitrogen, Total Kjeldahl	0.600		mg/l	0.300						SD
Phosphorus, Total	0.151		mg/l	0.010		1	07/05/17 11:15	07/06/17 10:12		
Phosphorus, Orthophosphate	0.049		mg/l	0.005		1	-	07/01/17 02:09	121,4500P-E	KA

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1722512 **Report Date:**

07/10/17

Method Blank Analysis Batch Quality Control

Parameter	Result Quali	fier Uni	ts	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab for	sample(s): 01-1 ⁻	1 Ba	tch: WG	1019018-1				
Nitrogen, Nitrate	ND	m	g/l	0.100	***	1	etta a constructivatile. •	07/01/17 01:36	121,4500NO3-F	- MR
General Chemistry - Wes	tborough Lab for	sample(s): 01-11	l Ba	tch: WG	1019019-1	a de terre de la composition de la comp	n da ser en	n i serie de la composition de la compo	
Nitrogen, Nitrite	ND			0.050		-410 - 17,5 - 17,650 1	Banking og offisierjeg. •	07/01/17 01:39	121,4500NO3-F	MR
General Chemistry - Wes Phosphorus, Orthophosphate	tborough Lab for ND				tch: WG					
		m		0.005		1	•	07/01/17 01:52	121,4500P-E	KA
General Chemistry - Wes	tborough Lab for	sample(s)	: 01-11	Ba	tch: WG	1019641-1			2112월 14일 - 14일 - 14일 14일 - 14일 - 14 14일 - 14일 - 14	
Phosphorus, Total	ND	m	g/l (0.010		1	07/05/17 11:15	07/06/17 09:51	121,4500P-E	SD
General Chemistry - Wes	borough Lab for	sample(s)	: 03 B	atch:	WG102	0064-1				
Nitrogen, Total Kjeldahl	ND	mg	g/l (0.300		1	07/06/17 10:57	07/06/17 17:34	121,4500NH3-H	JO
General Chemistry - West	borough Lab for	sample(s)	: 01-11	Bat	ch: WG	1020112-1				
Nitrogen, Ammonia	ND	mç).075			07/06/17 12:30	07/06/17 16:43	121,4500NH3-BH	OL I
General Chemistry - West	borough Lab for	sample(s)	: 01-02	,04-1	1 Batch	: WG1020	186-1			
Nitrogen, Total Kjeldahl	ND	mg	ı/I 0	.300		1	07/06/17 15:00	07/07/17 14:54	121,4500NH3-H	JO
General Chemistry - West	borough Lab for	sample(s)	01-08	Bat	ch: WG ²	1020191-1				
Chloride	ND	ma		1.0		1		07/06/17 17:39	121,4500CL-E	ML

Project Name: WINDCHIME Project Number: BEA99-2252		Lal	Lab Control Sample Analysis Batch Quality Control	Ity Contro	alysis I	Lab Number: Report Date:	ber: ate:	L1722512 07/10/17
Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD Q	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01-11	Associated sample(s):	01-11	Batch: WG1019018-2	018-2				
Nitrogen, Nitrate	35		ı		90-110			
General Chemistry - Westborough Lab Associated sample(s): 01-11	Associated sample(s):	01-11	Batch: WG1019019-2	019-2				
Nitrogen, Nitrite	103		ı		90-110			
General Chemistry - Westborough Lab Associated sample(s): 01-11	Associated sample(s)	: 01-11	Batch: WG1019032-2	032-2				
Phosphorus, Orthophosphate	104		1	1917 - 19 74 - 1917 - 1917 - 1917	90-110	-		
General Chemistry - Westborough Lab Associated sample(s): 01-11	Associated sample(s)		Batch: WG1019641-2	641-2				
Phosphorus, Total	102	1000 (B. 5.100 - 000-000 - 000-000 -	1	ann a' stadooffin b'nnis statun mar mei statu	80-120	1		
General Chemistry - Westborough Lab Associated sample(Associated sample(s)	(s): 03 Ba	Batch: WG1020064-2	4-2				
Nitrogen, Total Kjeldahl	66		•		78-122	• •		
General Chemistry - Westborough Lab Associated sample	Associated sample(s)	(s): 01-11	Batch: WG1020112-2	0112-2				
Nitrogen, Ammonia			ı		80-120	ı		20
General Chemistry - Westborough Lab Associated sample(s): 01-02,04-11	Associated sample(s)): 01-02,0		Batch: WG1020186-2	-2			
Nitrogen, Total Kjeldahl	94		,		78-122	-		

Page 31 of 42

ALPHA

Lab Number: L1722512 Report Date: 07/10/17	RPD Limits		MARKA
e Analysis _{ntrol}	%Recovery Limits F		
Lab Control Sample Analysis Batch Quality Control	LCSD %Recovery	Batch: WG1020191-2	
Ľ	LCS %Recovery	Chinde and supple(s): U1-08 Batch: WG1020191-2 Chinde and an and a supple(s): U1-08 Batch: WG1020191-2	
WINDCHIME BEA99-2252			
Project Name: Project Number:	Parameter General Chemictur, V	Chloride	Page 32 of 42

Project Name: WINDCHIME Project Number: BEA99-2252	CHIME -2252			Matr Bat	ix Spik tch Qual	Matrix Spike Analysis Batch Quality Control	sis	La R¢	Lab Number: Report Date:		L1722512 07/10/17
Darameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Q	RPD Qual Limits
General Chemistry - Westborough Lab Associated sample(s): 01-11	ah Lab Ass	ociated samp	ile(s): 01-11	QC Batch ID: WG1019018-4	D: WG10	119018-4	QC Sample: L1722512-01 Client ID:	L17225	12-01 Cli		B-2R
Nitrogen, Nitrate	1.69		5.20	88		9	1		83-113		17
Constant Chemistry - Westhorough ab Associated sample(s): 01-11	dh Lab Ass	ociated samp	ile(s): 01-11	QC Batch ID: WG1019019-4	D: WG10	19019-4	QC Sample: L1722512-01 Client ID:	L17225	12-01 Cliv	ent ID: B-	B-2R
Nitrogen, Nitrite	QN		3.45	86			3		80-120	1	50
General Chemistry - Westborough Lab Associated sample(s): 01-11	ah Lab Ass	ociated samp	ole(s): 01-11	QC Batch ID: WG1019032-4	D: WG10	019032-4	QC Sample: L1722512-02 Client ID: MW-3R	L17225	12-02 Cli	ent ID: M	W-3R
Phosphorus, Orthophosphate	0.012	0.5	0.517	101			3		80-120	1	20
Committee Mesthorough Lab Associated sample(s): 01-11	ch I ah Ass	ociated sam	ole(s): 01-11	I QC Batch ID: WG1019641-3	D: WG1(019641-3	QC Sample: L1722512-01 Client ID: B-2R	L17225	12-01 Cli	ent ID: B	2R
aleral Citerinsuy - westoored Phosphorus. Total	ND	0.5	0.533			no esta de la companya de la company			75-125		20
General Chemistry - Westborough Lab Associated sample(s): 03	igh Lab As:	sociated sam	1 2133	QC Batch ID: WG1020064-4	WG1020		QC Sample: L1722512-03 Client ID: MW-1	722512-	.03 Client	ID: MW-	
Nitrogen, Total Kjeldahl	DN	8	7.17	06	 //////	•	•		77-111		24
General Chemistry - Westborough Lab Associated sample(s): 01-11	idh Lab Ast	sociated sam	ple(s): 01-1 ⁻	1 QC Batch ID: WG1020112-4	ID: WG1	020112-4	QC Sample: L1722512-02 Client ID: MW-3R	: L17225	12-02 Cl	ient ID: N	W-3R
Nitrogen, Ammonia	ND		3.89	97		1	B		80-120	•	50
General Chemistry - Westborough Lab Associated sample(s): 01-02,04-11 QC Batch ID: WG1020186-4	uah Lab As	sociated sam	ple(s): 01-0;	2,04-11 QC	Batch ID	: WG1020		ample: I	QC Sample: L1722512-11 Client ID: SW-3	11 Clien	:ID: SW:
Nitrogen, Total Kjeldahl	0.600	and a state of the second s	7.91	91			I	ng 2 to 1000 to 1000 to 1000 to 1000 to 1000 to 1000	77-111	annes V Armania a scholaranna Armania	24
General Chemistry - Westborough Lab Associated sampl	ugh Lab As	sociated sam	ıple(s): 01-08	8 QC Batch ID: WG1020191-4	ID: WG1	020191-4	QC Sample: L1722512-03 Client ID: MW-1	:: L1722ł	512-03 CI	ient ID: N	1-W1
ander and	72	20	89	85		ı	I		58-140	1	

Page 33 of 42

Дена

ParameterMative SampleUplicate SampleUnitsRPDQualRPDGeneral Chemistry - Westborough LabAssociated sample(s):01-11QCBatch ID:WG1019018-3QCSample:L1722512-01Client ID:B-2RNitrogen, Nitrate1.691.71mg/l111111General Chemistry - Westborough LabAssociated sample(s):01-11QCBatch ID:WG1019019-3QCSample:L1722512-01Client ID:B-2RNitrogen, NitriteNDNDMDMMNCNN2General Chemistry - Westborough LabAssociated sample(s):01-11QCBatch ID:WG1019032-3QCSample:L1722512-01Client ID:B-2RNosphorus, Orthophosphate0.0120.0130.013Mg/lNCN22	Duplicate Sample h ID: WG1019018-3 QC S 1.71 1.71 h ID: WG1019019-3 QC S n ID: WG1019019-3 QC S ND ND 1D: WG1019032-3 QC S	Units R Sample: L17225 mg/l 217225 ample: L17225 mg/l I	Units RPD Qual QC Sample: L1722512-01 Client ID: E	
01-11 1.69 01-11 ND 01-11 0.012	h ID: WG1019018-3 QC S 1.71 h ID: WG1019019-3 QC S ND ND 1D: WG1019032-3 QC S	ample: L17225 mg/l ample: L17225 mg/l	<u>ш</u>	
1.69 01-11 ND 01-11 0.012	1.71 h ID: WG1019019-3 QC S ND 1D: WG1019032-3 QC S	mg/l ample: L17225 mg/l		RPU LIMITS
01-11 ND 01-11 0.012	h ID: WG1019019-3 QC S ND 1D: WG1019032-3 QC S	ample: L17225 mg/l		- 6 - 7
ND 01-11 0.012	ND 1D: WG1019032-3 QC S	mg/l	12-01 Client ID: B	
01-11 0.012	n ID: WG1019032-3 QC S		NC	20
0.012		ample: L17225	12-02 Client ID: N	MW-3R
	0.013	mg/l	8	20
General Chemistry - Westborough Lab Associated sample(s): 01-11 QC Batch ID: WG1019641-4 QC Sample: L1722512-01 Client ID: B-2R	n ID: WG1019641-4 QC S	ample: L17225	12-01 Client ID: B	3-2R
QN	ND ND N N N N N N N N N N N N N N N N N	mg/l	NC	20
General Chemistry - Westborough Lab Associated sample(s): 03 QC Batch ID: WG1020064-3 QC Sample: L1722512-03 Client ID: MW-1	WG1020064-3 QC Sam	ole: L1722512-(3 Client ID: MW-	
Nitrogen, Total Kjeldahl 0.718 mg/l	0.718		NC	24
General Chemistry - Westborough Lab Associated sample(s): 01-11 QC Batch ID: WG1020112-3 QC Sample: L1722512-02 Client ID: MW-3R	ID: WG1020112-3 QC S	ample: L17225	2-02 Client ID: M	AW-3R
Nitrogen, Ammonia ND MD mg/l	ON S	mg/l NC	o	20
vestborough Lab_Associated sample(s): 01-02,04-11 QC Batch ID: WG1020186-3		QC Sample: L	QC Sample: L1722512-11 Client ID: SW-3	t ID· SW-3
Nitrogen, Total Kjeldahl 0.600 0.746 mg/l		mg/l	22	24
General Chemistry - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG1020191-3 QC Sample: L1722512-03 Client ID: MW-1	ID: WG1020191-3 QC Se	imple: L172251	2-03 Client ID: M	1///1
Chloride 73 mg/l	73	₩9/I		
				· · ·

Page 34 of 42

ALPHA

		Analysis(*)	OPHOS-4500(2), CL-4500(28), NO3-	4500(2),NO2,4500NO3(2) TVN 4500(2),NO2,4500NO3(2) TVN 4500(20) TDUCS 4500(28)		NA-TI(180)	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)	NA-TI(180)																
		Frozen Date/Time																							-
		Seal		ADSelit	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	:
		Pres	} >	×	≻	≻	≻	۲	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	۲	≻	۲	≻	
		Temp dea C		4.C	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	:
		Final DH	¦ 1	2	8	8	7	ų	8	7	8	₽	7	8	8	7	\$	8	7	6	ų	7	Q	8	
(0)		Initial oH		7	°,	22	7	ų	б	7	۶	5	7	8	б	7	8	ų	7	8	ų	7	ų	8	
YES		Coolor	rooter	٩	A	A	٨	A	۷	A	A	A	۷	٨	A	٨	A	A	A	٨	A	٩	۷	A	
Were project specific reporting limits specified?	ation Custody Seal Absent	ormation	Container Type	Plastic 250ml unpreserved	Plastic 500ml H2SO4 preserved	Plastic 250ml HNO3 preserved	Plastic 250ml unpreserved	Plastic 500ml H2SO4 preserved	Plastic 250ml HNO3 preserved	Plastic 250ml unpreserved	Plastic 500ml H2SO4 preserved	Plastic 250ml HNO3 preserved	Plastic 250ml unpreserved	Plastic 500ml H2SO4 preserved	Plastic 250ml HNO3 preserved	Plastic 250ml unpreserved	Plastic 500ml H2SO4 preserved	Plastic 250ml HNO3 preserved	Plastic 250ml unpreserved	Plastic 500ml H2SO4 preserved	Plastic 250ml HNO3 preserved	Plastic 250ml unpreserved	Plastic 500ml H2SO4 preserved	Plastic 250ml HNO3 preserved	
Were project sl	Cooler Information Cooler A	Container Information	Container ID	L1722512-01A	L1722512-01B	L1722512-01C	L1722512-02A	L1722512-02B	1 1799519-090	L1722512-03A	L1722512-03B	1 1722512-03C	L1722512-04A	L1722512-04B	1 1722512-04C	L1722512-05A	L1722512-05B	L1722512-05C	L1722512-06A	11722512-06B	1 4700540_06C	L1722512-07A	I 1700510_07B	L1722512-07C	

Lab Number: L1722512 Report Date: 07/10/17 Serial_No:07101714:05

Sample Receipt and Container Information

WINDCHIME

Project Name:

Project Number: BEA99-2252

*Values in parentheses indicate holding time in days

Page 35 of 42

Container Information	ormation		Initial	Einel	ŀ			i	
tainer ID	Container ID Container Type	Cooler			remp deg C Pres Seal	Pres		Frozen Date/Time	Analvsis(*)
L1722512-08A	Plastic 250ml unpreserved	A	7	7	4.5	~	Absent		OPHOS-4500(2).CL-4500(28) NO3-
1722512-08B	Plastic 500ml H2SO4 preserved	A	Ŷ	ų	4.5	~	Absent		4500(2),NO2-4500NO3(2) TKN-4500NO3(2)
_1722512-08C	Plastic 250ml HNO3 preserved	A	₩ V	₽	4.5	۲	Absent		NA-TI(180)
L1722512-09A	Plastic 250ml unpreserved	۲	7	7	4.5	` ≻	Absent		OPHOS-4500(2) NO3-4500(2) NO2-
L1722512-09B	Plastic 500ml H2SO4 preserved	A	Ŷ	8	4.5	` ≻	Absent		4500NO3(2) TKNA600(28) TBUOC 4500(20) 1110 4500
L1722512-10A	Plastic 250ml unpreserved	A	7	7	4.5	` ≻	Absent		0PHOS-4500(29), 1 PHOS-4500(28), NH3-4500(28)
L1722512-10B	Plastic 500ml H2SO4 preserved	A	Ŷ	Ŷ	4.5	۲ ۲	Absent		4500NO3(2) TKNL4500/38) TBUOS 4502/20/1022
L1722512-11A	Plastic 250ml unpreserved	A	7	7	4.5	۲ ۲	Absent		0PHOS-4500(20), 17103-4500(28), NH3-4500(28)
L1722512-11B	Plastic 500ml H2SO4 preserved	A	8	Ŷ	4.5	ہ ۲	Absent		4500NO3(2) TKN-4500Y03(2)

*Values in parentheses indicate holding time in days

Serial_No:07101714:05 Lab Number: L1722512 Report Date: 07/10/17

Project Name: WINDCHIME

WINDCHIME **Project Name:**

BEA99-2252 **Project Number:**

A

Lab Number: L1722512 **Report Date:** 07/10/17

GLOSSARY

Acronyms	
EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any ediustraments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	 Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the SRM associated field samples.
- Semi-dynamic Tank Leaching Procedure per EPA Method 1315. STLP

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the 1 original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- Spectra identified as "Aldol Condensation Product". A

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that B have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name: WINDCHIME

Project Number: BEA99-2252

Serial_No:07101714:05

Lab Number:	L1722512
Report Date:	07/10/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted С analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations D of the analyte. Е
- Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should G be considered estimated. H
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection. I
- The lower value for the two columns has been reported due to obvious interference. Μ
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where NJ the identification is based on a mass spectral library search. р
- The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Q Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- S - Analytical results are from modified screening analysis.
- ĩ - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND - Not detected at the reporting limit (RL) for the sample.

Project Name:WINDCHIMEProject Number:BEA99-2252

 Lab Number:
 L1722512

 Report Date:
 07/10/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: NPW and SCM: Perchlorate EPA 9010: NPW and SCM: Amenable Cyanide Distillation EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

CHAIN OF CUSTODY		Date Rec'd in Lab. 6/30	117	АLPHA Job #: 🛄	722512
ALPHA	Droiert Information	Report Information Data Deliv	ta Deliverables	Billing Information	
2			EMAIL	X Same as Client info	PO #: 2252
	Project Name: Windchime		Add'l Deliverables		
FAX: 508-898-9193 FAX: 508-822-3288		Regulatory Requirements/Report Limits	nts/Report Limits	a a secondar de la comparación de la co La comparación de la c	
Client Information	Project Location: Mashpee, MA	State/Fed Program		Criteria	
Client: Bennett Environmental Associates	Project #: BEA99-2252				
Address: 1573 Main Street / P.O. Box 1743	Project Manager: David C. Bennett				
Brewster, MA 02631	ALPHA Quote #:				
Phone: 508-896-1706	Turn-Around Time	ANAI YSIS			F C
Fax: 508-896-5109	Standard 🛛 🗌 Rush (onLY IF PRE-APPROVED)				SAMPLE HANDLING
Email: sfarrenkopf@bennett-ea.com					
These samples have been Previously analyzed by Alpha	Due Date: Time:				🛛 Not Needed 📅
Other Project Specific Requirements/Comments/Detection Limits:	/Detection Limits:				
		SO			□ Lab to do T (Please specify L
			-		below) G
AI DHA I sh ID Samnle ID	Collection Sample Sampler's	T ,EH Nitrit			
	ime Matrix	sodium TKN, N Vitrate, Dhlorid		-	Sample Specific Comments
	1(0/2/1/ 3:40 and 16.)				4
	15:15				4
MWV-GIN	n'11:10				4
MW-2	2:15				4
er	<u>n 1:'(S</u>				4
6	n 10:50				4
a nag	613011 12:10 GW 6.IB				4
ÛМ рг.зк	(alznit) 1200 an Cits				4
					32
	Container Type	, a. a.	1	8 1 1	
	Preservative	c D 0 0 -	•	•	Please print clearly, legibly and completely. Samples can
	Relinquished By:	. Date/Time	Ŗeceivęd B∳⁄;	/ Date/Time	not be logged in and turnaround time clock will not
	Carlin C. Knadlil	1 PHAI LIKE	We Will A	1 digd on 15 will	start unu any ampiguites are resolved. All samples submited are subject to
FORM NO: 01-01(PNJ) (rev. 25-AFR-03)	D and a far y	12/1 1710 VUC	a	CO21 21/2017	Alpha > Fayinstin Tanks

Page 41 of 42

C//UZ	NU/ / / Data Deliverables	EWAIL EVAIL Adof' Defiverables	Regulatory Requirements/Report Limits	Criteria						SMIJUNA	Done	į				Samala Roscific								- / Please print clearly legibly	/ , Rećeived By: , , Date/Time turnaround time clock will not	ANIA MARTING AND 17 540 restored All samples	
	PAGE 2 OF 2	Project Name: Windchime		Project Location: Mashpee, MA State/Fed Program	Project #: BEA99-2252	Project Manager. David C. Bennett	ALPHA Quote #:	Turn-Around Time	Standard CNLY IF PRE-APPROVED		Due Date: Time:	/Detection Limits:		 		Date Time Matrix Initials 0. Z			-				Container Type P -	Preservative 0 D -	C C C C C C C C C C C C C C C C C C C	A CONTRACT A A A CORDINICAL	
CHAIN OF CHETONY	ALPHA MANATION		FAX: 508-898-9193 FAX: 508-822-3288		Client: Bennett Environmental Associates	Address: 1573 Main Street / P.O. Box 1743	Brewster, MA 02631	Phone: 508-896-1706	Fax: 508-896-5109	Email: sfarrenkopf@bennett-ea.com	☐ These samples have been Previously analyzed by Alpha	Other Project Specific Requirements/Comments/Detection Limits:	-		ALPHA Lab ID Sample ID	(Lab Use Only)	BALL BUNG SW-1	+	e-me 11							FORM NO- 11-DIG-14-JJ	

rage 4z 01 4z

ANALYTICAL REPORT

Lab Number:	L1732637
Client:	Bennett Environmental Associates 1573 Main Street Brewster, MA 02631
ATTN: Phone:	David Bennett (508) 896-1706
Project Name:	WINDCHIME
Project Number:	BEA99-2252
Report Date:	09/21/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: Project Number:	WINDCHIME BEA99-2252			Lab Number: Report Date:	L1732637 09/21/17
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1732637-01	B-2R	WATER	MASHPEE, MA	09/13/17 10:20	09/14/17
L1732637-02	MW-3R	WATER	MASHPEE, MA	09/13/17 11:00	09/14/17
L1732637-03	MW-1	WATER	MASHPEE, MA	09/13/17 13:05	09/14/17
L1732637-04	MW-2	WATER	MASHPEE, MA	09/13/17 14:25	09/14/17
L1732637-05	MW-4	WATER	MASHPEE, MA	09/13/17 13:55	09/14/17
L1732637-06	PZ-1R	WATER	MASHPEE, MA	09/13/17 11:15	09/14/17
L1732637-07	PZ-2R	WATER	MASHPEE, MA	09/13/17 12:00	09/14/17
L1732637-08	PZ-3R	WATER	MASHPEE, MA	09/13/17 12:00	09/14/17
L1732637-09	SW-1	WATER	MASHPEE, MA	09/13/17 11:20	09/14/17
L1732637-10	SW-2	WATER	MASHPEE, MA	09/13/17 11:55	09/14/17
L1732637-11	SW-3	WATER	MASHPEE, MA	09/13/17 12:25	09/14/17

Serial_No:09211712:11

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1732637 Report Date: 09/21/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: WINDCHIME Project Number: BEA99-2252 Lab Number: L1732637 Report Date: 09/21/17

Case Narrative (continued)

Volatile Organics by Method 624

The WG1042186-9 LCS recovery for 1,1,1-trichloroethane (110%), associated with L1732637-02 through -

05, is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curten Walker Cristin Walker

Ũ

Title: Technical Director/Representative

Date: 09/21/17

ORGANICS

,

VOLATILES

			Serial_N	o:09211712:11
Project Name:	WINDCHIME		Lab Number:	L1732637
Project Number:	BEA99-2252		Report Date:	09/21/17
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1732637-02 MW-3R MASHPEE, MA		Date Collected: Date Received: Field Prep:	09/13/17 11:00 09/14/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 5,624 09/15/17 13:36 GT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	5.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Chloroform	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	3.5		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Tetrachloroethene	ND		ug/l	1.5		1
Chlorobenzene	ND		ug/l	3.5	••••	1
Trichlorofluoromethane	ND		ug/l	5.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1 `
Bromodichloromethane	ND		ug/l	1.0		1
rans-1,3-Dichloropropene	ND		ug/l	1.5		1
cis-1,3-Dichloropropene	ND		ug/l	1.5		1
Bromoform	ND		ug/l	1.0	••••	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	5.0		1
Bromomethane	ND		ug/l	5.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.5		1
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1

					Se	erial_N	o:09211712:11
Project Name:	WINDCHIME				Lab Num	ber:	L1732637
Project Number:	BEA99-2252				Report D	ate:	09/21/17
		SAMP	LE RESULT	S			
Lab ID: Client ID: Sample Location:	L1732637-02 MW-3R MASHPEE, MA				Date Colle Date Rece Field Prep:	ived:	09/13/17 11:00 09/14/17 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboroug	jh Lab	ni Ali Anglanda				
1,3-Dichlorobenzene		ND		ug/l	5.0		a se en la companya de la companya 1
1,4-Dichlorobenzene		ND		ug/l	5.0		1
p/m-Xylene1		ND		ug/l	2.0		1
o-xylene¹		ND		ug/l	1.0	•••	1
Xylenes, Total ¹		ND		ug/l	1.0		
Styrene ¹		ND		ug/l	1.0		1
Acetone ¹		ND		ug/l	10		· · · · · · · · · · · · · · · · · · ·
Carbon disulfide1		ND		ug/l	5.0		1
2-Butanone ¹		ND		ug/l	10		1
Vinyl acetate1	···· ·· ··· · · · · · · · · · · · · ·	ND		ug/l	10		1
4-Methyl-2-pentanone1		ND		ug/l	10		1
2-Hexanone ¹		ND		ug/l	10		1
Acrolein ¹		ND		ug/l	8.0		1
Acrylonitrile ¹		ND		ug/l	10		1
Dibromomethane ¹		ND		ug/l	1.0	••••••••••••••••••••••••••••••••••••••	
Surrogate				% Recovery	Qualifier		ceptance Criteria

Surrogate	% Recovery	Qualifier	Criteria	
Pentafluorobenzene	96		80-120	
Fluorobenzene	101		80-120	
4-Bromofluorobenzene	99		80-120	

			Serial_N	o:09211712:11
Project Name:	WINDCHIME		Lab Number:	L1732637
Project Number:	BEA99-2252		Report Date:	09/21/17
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1732637-03 MW-1 MASHPEE, MA		Date Collected: Date Received: Field Prep:	09/13/17 13:05 09/14/17 Not Specified
Matrix: Analytical Method: Analytical Date:	Water 5,624 09/15/17 14:09			

Parameter	Result	Qualifier	Units	RL	MDL.	Dilution Factor
/olatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	5.0		1
I,1-Dichloroethane	ND		ug/l	1.5	***	1
Chloroform	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	3.5		1
Dibromochloromethane	ND		ug/l	1.0	***	1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Tetrachloroethene	ND		ug/l	1.5		1
Chlorobenzene	ND		ug/l	3.5		1
Trichlorofluoromethane	ND		ug/l	5.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0	•••	1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	1.5		1
cis-1,3-Dichloropropene	ND		ug/l	1.5		1
Bromoform	ND		ug/l	1.0		
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	••••	. ,
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	5.0		1
Bromomethane	ND		ug/l	5.0		1
Vinyl chloride	ND		ug/l	1.0	•••	1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.5		1
cis-1,2-Dichloroethene1	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1

Analyst:

GT

					Se	erial_N	p:09211712:11
Project Name:	WINDCHIME				Lab Nun	iber:	L1732637
Project Number:	BEA99-2252				Report D	Date:	09/21/17
		SAMP	LE RESULT	S			
Lab ID: Client ID: Sample Location:	L1732637-03 MW-1 MASHPEE, MA				Date Colle Date Rece Field Prep	ived:	09/13/17 13:05 09/14/17 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborou	gh Lab			- Augusta Bayar		
1,3-Dichlorobenzene		ND		ug/l	5.0		1
1,4-Dichlorobenzene		ND		ug/l	5.0		1
p/m-Xylene1		ND		ug/l	2.0	•••	1
o-xyiene¹		ND		ug/i	1.0	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Xylenes, Total ¹		ND		ug/l	1.0		
Styrene ¹		ND		ug/l	1.0		1
Acetone ¹		ND		ug/l	10		1
Carbon disulfide ¹		ND		ug/l	5.0		1
2-Butanone1		ND		ug/l	10		1
/inyl acetate ¹		ND		ug/l	10		1
-Methyl-2-pentanone1		ND		ug/l	10		1
2-Hexanone ¹		ND		ug/l	10		1
Acrolein ¹		ND		ug/l	8.0		1
crylonitrile ¹		ND		ug/l	10		1
Dibromomethane ¹		ND		ug/l	1.0		1
Surrogate				% Recovery	Qualifier		eptance riteria

% Recovery	Qualifier	Criteria	
95		80-120	
101		80-120	
100		80-120	
	95 101	95 101	95 80-120 101 80-120

			Serial_N	o:09211712:11
Project Name:	WINDCHIME		Lab Number:	L1732637
Project Number:	BEA99-2252		Report Date:	09/21/17
-		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1732637-04 MW-2 MASHPEE, MA		Date Collected: Date Received: Field Prep:	09/13/17 14:25 09/14/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 5,624 09/15/17 14:43 GT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
/olatile Organics by GC/MS - W	estborough Lab					
Methylene chloride	ND		ug/l	5.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Chloroform	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	3.5		1
Dibromochloromethane	ND		ug/l	1.0		1
I,1,2-Trichloroethane	ND		ug/l	1.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Fetrachioroethene	ND		ug/l	1.5		1
Chlorobenzene	ND		ug/i	3.5		1
Trichlorofluoromethane	ND		ug/l	5.0		1
I,2-Dichloroethane	ND		ug/l	1.5		1
I,1,1-Trichloroethane	ND		ug/l	2.0		1
Bromodichloromethane	ND		ug/l	1.0		1
rans-1,3-Dichloropropene	ND		ug/l	1.5		1
cis-1,3-Dichloropropene	ND		ug/l	1.5		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	5.0		1
Bromomethane	ND		ug/l	5.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.5		1
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1

					Se	erial_N	o:09211712:11
Project Name:	WINDCHIME				Lab Num	ber:	L1732637
Project Number:	BEA99-2252				Report D	ate:	09/21/17
		SAMP		S			
Lab ID: Client ID: Sample Location:	L1732637-04 MW-2 MASHPEE, MA				Date Colle Date Rece Field Prep:	ived:	09/13/17 14:25 09/14/17 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene		ND		ug/l	5.0		1
1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	ND		ug/l	5.0		1
p/m-Xylene¹		ND		ug/l	2.0	• • • • • • • • • • • • • • • • • • •	 1
o-xylene ¹		ND		ug/l	1.0		1
Xylenes, Total ¹		ND		ug/l	1.0		1
Styrene ¹		ND		ug/l	1.0		1
Acetone ¹		ND		ug/l	10	•••	1
Carbon disulfide1		ND		ug/l	5.0		1
2-Butanone ¹		ND		ug/l	10		1
Vinyl acetate1		ND		ug/l	10		1
4-Methyl-2-pentanone1		ND		ug/l	10		1
2-Hexanone ¹		ND		ug/l	10		1
Acrolein ¹		ND		ug/l	8.0		1
Acrylonitrile ¹		ND		ug/l	10		1
Dibromomethane ¹		ND		ug/l	1.0	••••••••••••••••••••••••••••••••••••••	1
Surrogate				% Recovery	Qualifier		ceptance Sriteria

Surrogate	% Recovery	Qualifier	Criteria	
Pentafluorobenzene	97		80-120	
Fluorobenzene	102		80-120	
4-Bromofluorobenzene	100		80-120	

			Serial_N	o:09211712:11
Project Name:	WINDCHIME		Lab Number:	L1732637
Project Number:	BEA99-2252		Report Date:	09/21/17
•		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1732637-05 MW-4 MASHPEE, MA		Date Collected: Date Received: Field Prep:	09/13/17 13:55 09/14/17 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst:	Water 5,624 09/15/17 15:16 GT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
/olatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	5.0		1
I,1-Dichloroethane	ND		ug/l	1.5		1
Chloroform	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	3.5		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Tetrachloroethene	ND		ug/l	1.5		1
Chlorobenzene	ND		ug/l	3.5		1
Trichlorofluoromethane	ND		ug/l	5.0		1
1.2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	1.5		1
cis-1,3-Dichloropropene	ND		ug/l	1.5		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	5.0		1
Bromomethane	ND		ug/l	5.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0	****	1
trans-1,2-Dichloroethene	ND		ug/l	1.5		1
cis-1,2-Dichloroethene1	ND		ug/i	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1

				Serial_No:09211712:11			
Project Name:	WINDCHIME				Lab Num	ıber:	L1732637
Project Number:	BEA99-2252				Report D)ate:	09/21/17
		SAMPI	E RESULT	S			
Lab ID: Client ID: Sample Location:	L1732637-05 MW-4 MASHPEE, MA				Date Collected: Date Received: Field Prep:		09/13/17 13:55 09/14/17 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborou	gh Lab	gang ang				
1,3-Dichlorobenzene		ND		ug/l	5.0		ne en e
1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	ND		ug/l	5.0		1
p/m-Xylene1		ND		ug/i	2.0	•••	1
o-xylene¹		ND		ug/l	1.0		
Xylenes, Total ¹	· · · · · · · · · · · · · · · · · · ·	ND		ug/l	1.0		1
Styrene ¹		ND		ug/l	1.0		1
Acetone ¹		ND		ug/l	10		
Carbon disulfide1		ND		ug/l	5.0		1
2-Butanone ¹		ND		ug/l	10		1
Vinyl acetate ¹		ND		ug/l	10		1
4-Methyl-2-pentanone1		ND		ug/l	10		1
2-Hexanone ¹		ND		ug/l	10		1
Acrolein ¹		ND		ug/l	8.0		1
Acrylonitrile ¹		· ND		ug/l	10		1
Dibromomethane ¹		ND		ug/l	1.0		1
Surrogate				% Recovery	Qualifier		ceptance Criteria

78 Recovery	Qualifier	Criteria	
97		80-120	
101		80-120	
102		80-120	
	101	97 101	97 80-120 101 80-120

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab Number: L1732637 Report Date:

09/21/17

Method Blank Analysis Batch Quality Control

Analytical Method:	5,624
Analytical Date:	09/15/17 11:55
Analyst:	GT

rameter	Result	Qualifier	Units	RL	MDL
platile Organics by GC/MS -	Westborough La	ab for samp	e(s): 02-0)5 Batch: \	NG1042186-10
Methylene chloride	ND		ug/l	5.0	
1,1-Dichloroethane	ND		ug/l	1.5	
Chloroform	ND		ug/l	1.5	
Carbon tetrachloride	ND		ug/l	1.0	
1,2-Dichloropropane	ND		ug/l	3.5	
Dibromochloromethane	ND		ug/i	1.0	
1,1,2-Trichloroethane	ND		ug/l	1.5	
2-Chloroethylvinyl ether	ND		ug/l	10	
Tetrachloroethene	ND		ug/l	1.5	
Chlorobenzene	ND		ug/l	3.5	
Trichlorofluoromethane	ND		ug/l	5.0	**
1,2-Dichloroethane	ND		ug/l	1.5	
1,1,1-Trichloroethane	ND		ug/l	2.0	
Bromodichloromethane	ND		ug/l	1.0	
trans-1,3-Dichloropropene	ND		ug/l	1.5	
cis-1,3-Dichloropropene	ND		ug/l	1.5	
Bromoform	ND		ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	
Benzene	ND		ug/l	1.0	
Toluene	ND		ug/l	1.0	
Ethylbenzene	ND		ug/l	1.0	
Chloromethane	ND		ug/l	5.0	
Bromomethane	ND		ug/l	5.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	2.0	
1,1-Dichloroethene	ND		ug/l	1.0	
trans-1,2-Dichloroethene	ND		ug/l	1.5	
cis-1,2-Dichloroethene1	ND		ug/l	1.0	
Trichloroethene	ND		ug/l	1.0	

Project Name: WINDCHIME Project Numb

Project Number:	BEA99-2252
-----------------	------------

Lab Number: L1732637 Report Date:

09/21/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624 Analytical Date: 09/15/17 11:55 Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	ab for samp	e(s): 02-0	05 Batch:	WG1042186-10
1,2-Dichlorobenzene	ND		ug/l	5.0	
1,3-Dichlorobenzene	ND		ug/l	5.0	
1,4-Dichlorobenzene	ND		ug/l	5.0	·····
p/m-Xylene1	ND		ug/l	2.0	••••
o-xylene ¹	ND		ug/l	1.0	••••••••••••••••••••••••••••••••••••••
Xylenes, Total ¹	ND		ug/l	1.0	
Styrene ¹	ND	· · · · · · · · · · · · · · · · · · ·	ug/l	1.0	
Acetone ¹	ND	· · · · · · · · · · · · · · · · · · ·	ug/l	10	
Carbon disulfide1	ND		ug/l	5.0	en e
2-Butanone ¹	ND		ug/l	10	
Vinyl acetate ¹	ND		ug/l	10	
4-Methyl-2-pentanone1	ND		ug/l	10	
2-Hexanone ¹	ND		ug/i	10	
Acrolein ¹	ND		ug/l	8.0	••••
Acrylonitrile ¹	ND		ug/l	10	
Dibromomethane ¹	ND		ug/l	1.0	······································

		Aco	eptance
Surrogate	%Recovery		riteria
Pentafluorobenzene	95	8	30-120
Fluorobenzene	102	8	30-120
4-Bromofluorobenzene	100	ε	30-120

e: WINDCHIME ber: BEA99-2252 ber: BEA99-2252 %Recovery Qual %Re %Recovery Qual %Re fide 100 inde 100 methane 100 methane 5 inyl ether 90 methane 100 methane 100 methane 100 methane 100 methane 100 methane 90 methane 90			
LCS LCS LCS LCS Action of the secondary Qual %Recovery Qual %Recovery Mere Mere		Report Date:	. Date: 09/21/17
anics by GC/MS - Westborough Lab Associated sample(s): 02-05 e chloride 105 noethane 110 m 110 m 110 strachloride 100 oropropane 100 oropropane 95 shloronethane 95 shloronethane 100 onothane 100 onoethane 100 fuloronethane 100 onoethane 100 fuloronethane 100 fuloronethane 95 fuloronethane 100 fuloronethane 100 onoethane 100 onoethane 95 fuloronethane 95 fuloronethane 100 fuloronethane 95 fuloronethane 95 fuloronethane 95 fuloronethane 96 fuloronethane 96 fuloronopropene 90 fuloronopropene 90 <th>LCSD %Recovery Recovery Qual Limits</th> <th>very its RPD</th> <th>RPD Qual Limits</th>	LCSD %Recovery Recovery Qual Limits	very its RPD	RPD Qual Limits
	Batch: WG1042186-9		
10 10 10 100 110 110 110 95 110 105 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100	ł		30
110 110 110 110 110 110 105 105 100 100	- 78-116	16	30
10 10 11 10 11 95 11 96 11 105 11 105 11 100 100 100 110 95 110 100 110 100 110 100 110 100	-		30
11 11 11 95 11 95 11 95 11 105 12 105 11 105 11 105 11 105 11 105 11 105 11 100 11 100 11 100 11 100 11 100 11 100 105 105	- 60-112	-	30
85 90 10 10 10 10 10 10 10 10 10 10 10 10 10	- 83-113		30
	-	- 29	30
	- 80-118	18	30
	- 69-124	24 -	30
hane bropene bothane	. 80-126	26	30
	- 80-126	26	30
	- 83-128	28 	30
	- 82-110		30
	- 72-109	1 60	30
	- 71-120		30
	- 73-106	- 90	30
	- 78-111	1	30
	- 45-131	31	30
	- 81-122	-	30
	- 84-		30
and a function of the second	- 83-121		30
Ethylbenzene 110 -	- 84-	84-123	30
Chloromethane -	-02	70-144 -	30
Bromomethane		63-141 -	

Page 17 of 63

Project Name:	WINDCHIME			Batch Qu	Batch Quality Control		Lab Number:	mber:	L1732637
Project Number:	BEA99-2252						Report Date:	Date:	09/21/17
Parameter		LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	Uda	lenO	RPD Limite
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-05	SC/MS - Westborough	h Lab Associated s	sample(s): [12-05 Batch: W	Batch: WG1042186-9				
Vinyl chloride		105		ı		56-118	ı		30
Chloroethane		110		·		74-130	·		30
1,1-Dichloroethene		110				77-116	•	The second se	30
trans-1,2-Dichloroethene	Je	110		ı		81-121	J		30
cis-1,2-Dichloroethene1		110		f	na mana na manang sa kabula na manananana dan mana n	85-110			30
Trichloroethene	терер инстра или сталици, в болошно основном метерифија компани и основ одновија да или	110		ı		84-118			30
1,2-Dichlorobenzene		95		1	And a second of the second sec	78-128		and a little second of the little second	30
1,3-Dichlorobenzene		100		·		77-125	ı		30
1,4-Dichlorobenzene		100				77-125	E		30
p/m-Xylene ¹		108		·		81-121	1		30
o-xylene1		110		ı		81-124	I		30
Styrene ¹		110		1		84-133	•		30
Acetone ¹		78		I		40-160	I		30
Carbon disulfide ¹		100	, and the second se			54-134	a		30
2-Butanone ¹		80			and the second sec	57-116	F	And the second	30
Vinyl acetate ¹		92				40-160	1		30
4-Methyl-2-pentanone ¹		86		ſ		79-125	1		30
2-Hexanone ¹		82		I		78-120	ı		30
Acrolein ¹		68		ł		40-160	ı		30
Acrylonitrile ¹		92		ı		66-123	ĩ		30
Dibromomethane ¹	4 101 WHYLO MARKAN ALL COMMUNICATION (1) 1 (1) 1 (1) 1 (1) 1000 WARNING MARK COMMUNICATION (1) (1) 1000 WARNING WARN COMMUNICATION (1) (1) 1000 WARNING WARN COMMUNICATION (1) (1) 1000 WARNING WARNING WARN COMMUNICATION (1) (1) 1000 WARNING WARNI WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNI WARNING WARNING WANNING WARNING	100		t		65-126	ı		30
				a set of the set of th	the second	- We have a set of a set of a set of a set of the set o	the state of the s		a series of the series of the series and bandwood of the series of the series bandwood ways

Lab Control Sample Analysis Batch Quality Control

Page 18 of 63

			Batch Q	Batch Quality Control		ж. Га	Lab Number: Report Date:	L1732637 09/21/17
Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	y RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-05	ugh Lab Associated s	ample(s): (Batch: WG1042186-9				
Surrogate				LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene Fluorobenzene 4-Bromofluorobenzene				100 104 102				80-120 80-120 80-120

Page 19 of 63

Арна

Project Name: Project Number:	WINDCHIME BFA99-2252			-	Datchi Quality Conitrol		ioni	7,	Lab Number:	er:	L1732637
								E,	керои џате:		09/21/17
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recoverv	Re Qual L	Recovery Limits F	10 10	RPD Qual I imi t s
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-05	MS - Westborough	Lab Assoc	lated sample		Batch ID:	WG10421		nple: L173		Client ID	
Methylene chloride	ND	200	200	100		T			70-111		
1,1-Dichloroethane	ND	200	210	105		÷ 1	:		78-116) C
Chloroform	ŊŊ	200	210	105		ı		80	86-111	,	30
Carbon tetrachloride	QN	200	180	06			-	9	60-112	1	30
1,2-Dichloropropane	QN	200	210	105		,	ı	8	83-113	1	30
Dibromochloromethane	ND	200	180	90		•	1	5	58-129		30
1,1,2-Trichloroethane	QN	200	190	60		ı	ł	Ω.	80-118	ľ	30
2-Chloroethylvinyl ether	QN	200	190	62		ľ		Ö	69-124	,	US CE
Tetrachloroethene	QN	200	200	100			E	8	80-126	-	30
Chlorobenzene	QN	200	220	110		ı	I	ö	80-126		30
Trichlorofluoromethane	ŊD	200	200	100		e		ö	83-128		30
1,2-Dichloroethane	Ŋ	200	200	100				60	82-110	:	300
1, 1, 1-Trichloroethane	QN	200	210	105		r		7	72-109	r	30
Bromodichloromethane	QN	200	190	95	and a second	ſ		7.	71-120	1	30
trans-1,3-Dichloropropene	QN	200	180	06				22	73-106	1	30
cis-1,3-Dichloropropene	QN	200	180	06		E	1	78	78-111	1	30
Bromoform	QN	200	180	06	110 1 1 miles of the second se	E		4	45-131	1	30
1,1,2,2-Tetrachloroethane	QN	200	180	90		•	- - - -	8	81-122		30
Benzene	QN	200	220	110				8	84-116	8	30
Toluene	QN	200	210	105		ł	ı	80	83-121	ı	30
Ethylbenzene	QN	200	220	110				84	84-123		30
Chloromethane	QN	200	220	110		·	ı	. 70	70-144		3 (c
Bromomethane	QN	200	190	65		I	1	. 83	63-141	· t	30
Vinyl chloride	QN	200	190	95		E		56	56-118	1	00

.ome// toricad				Ma	trix Sp _{3atch} Qu	Matrix Spike Analysis Batch Quality Control	Ilysis trol	Lab Number:	ber:	L1732637
Project Number:	BEA99-2252							Report Date:	ate:	09/21/17
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual	Recovery Limits	RPD Q	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-05	MS - Westborough	ו Lab Associ	ated sample	1988,698	Batch ID:	QC Batch ID: WG1042186-6		QC Sample: L1732200-02		Client ID: MS Sample
Chloroethane	QN	200	210	105			B	74-130	ı	30
1.1-Dichloroethene	Ŋ	200	210	105			-	77-116		30
trans-1,2-Dichloroethene	QN	200	210	105		: • •		81-121		30
cis-1,2-Dichloroethene ¹	QN	200	210	105	an a sea	T	1	85-110	L.	30
Trichloroethene	QN	200	200	100		, '	:	84-118		30
1.2-Dichlorobenzene	ND	200	190	95		8		78-128	1	30
1,3-Dichlorobenzene	ŊŊ	200	200	100		1		77-125		30
1,4-Dichlorobenzene	QN	200	200	100			•	77-125	9	30
p/m-Xylene1	Q	400	430	108		L	T	81-121	•	30
o-Xylene ¹	QN	200	210	105	-	1	•	81-124	ı	30
Styrene ¹	DN	200	220	110		L	no and a second s	84-133		30
Acetone ¹	250	500	650	80		•	· · · · · · · · · · · · · · · · · · ·	40-160	I I	30
Carbon disulfide ¹	QN	200	200	100		3	E	54-134	1	30
2-Butanone ¹	QN	500	420	84		1		57-116	т	30
Vinvl acetate ¹	QN	400	400	100	-	•	· · · · · · · · · · · · · · · · · · ·	40-160		30
4-Methyl-2-pentanone ¹	QN	500	420	84				79-125	I	30
2-Hexanone ¹	QN	500	400	80		1		78-120		30
Acrolein ¹	QN	400	120	30	ø	ł		40-160	. 1	30
Acrylonitrile ¹	QN	400	350	88	1	1	1	66-123	F	30
Dibromomethane ¹	QN	200	190	95		•	•	65-126	1	30

Page 21 of 63

L1732637	09/21/17	RPD Qual Limits	ID: MS Sample		-			
Lab Number:	Report Date:	v RPD	L1732200-02 Client	Acceptance Criteria		80-120	00-120 80-120	80-170
ıalysis _{ntrol}		MSD Recover %Recovery Qual Limits	:186-6 QC Sample:	MSD % Recovery Qualifier				
Matrix Spike Analysis Batch Quality Control		MSD Qual Found	3atch ID: WG1042	Qualifier % Rec				
Ma [:] E		MS %Recovery	le(s): 02-05 QC	MS % Recovery Qui		104	98	
		d Found	ssociated sampl	%				
		MS Added	jh Lab As					
WINDCHIME	BEA99-2252	Native Sample	/MS - Westboroug					
Project Name:	Project Number:	Parameter	Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-05 QC Batch ID: WG1042186-6 QC Sample: L1732200-02 Client ID: MS Sample	Surrogate	4-Bromofluorobenzene	Fluorobenzene	Pentafluorobenzene	

Page 22 of 63

Астна

Project Name: WINDCHIME Project Number: BEA99-2252		Lab Duplicate Analysis Batch Quality Control	alysis trol	Lab Rep	Lab Number: Report Date:	L1732637 09/21/17
Parameter	Native Sample	Duplicate Sample	Units	RPD QI	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-05 Sample	ab Associated sample(s): 0	2-05 QC Batch ID: WG1042186-5		mple: L1732	QC Sample: L1732200-02 Client ID: DUP	OUP .c
		QN	l/6n	NC	30	
1.1-Dichloroethane	ND	DN	l/gu	Ŋ	30	
Chloroform	QN	ND	l/ôn	NC	30	
Carbon tetrachloride	CN	AND	l/ôn	NC	30	
1.2-Dichloropropane	ND	ND	l/ɓn	Q	30	
Dibromochloromethane	QN	ND	l/ôn	NC	30	
1,1,2-Trichloroethane	n N N	QN	l/ɓn	NC	30	
2-Chloroethylvinyl ether	ND	ND	l/ɓn	NC	30	
Tetrachloroethene		ND	l/ôn	NC	30	
Chlorobenzene	QN	DN	l/6n	NC	30	
Trichlorofluoromethane	QN	ND	l/ɓn	NC	30	
1,2-Dichloroethane	QN	QN	l/Bn	SC	30	
1,1,1-Trichloroethane	QN	ND	ng/l	N	30	
Bromodichloromethane	QN	QN	l/ôn	N	30	
trans-1,3-Dichloropropene	QN	CN	убл	N	30	
cis-1,3-Dichloropropene	QN	QN	ng/l	NC	30	
Bromoform	ΟN	QN	l/gu	NC	30	10 MAR 10 MAR 4000 - 1000
1,1,2,2-Tetrachloroethane	QN	QN	ligu Ngu	NC	30	
Benzene	QN	QN	l/ôn	NC	30	
Toluene	QN	QN	l/ôn	NC	30	
Ethylbenzene	QN	QN	l/bn	N	30	

Page 23 of 63

ALPHA

Lab Number: L1732637 Report Date: 09/21/17	RPD Qual Limi t s	QC Sample: L1732200-02 Client ID: DUP			NC 30	30 30	30 30	NC 30	30 30	30 NC		30	30	30 30	30	30 30	30	30	30	30 30	30	30 States of the second s	
Analysis ontrol	Units	1042186-5	na/l	l/ôn	l/ôn	l/ôn	l/ɓn	l/ôn	l/ôn	l/ĝn	l/gu	l/bn	l/bn	ng/l	l/bn	l/gu	l/bn	l/ɓn	l/gu	l/ôn	l/ɓn	l/ɓn	///
Lab Duplicate Analysis Batch Quality Control	Duplicate Sample	2-05 QC Batch ID: WG1042186-5	, Q	QN	ND	ND	QN	UN N	DN	QN	DN N	DN	QN	ND	ND	ND	ND	210	ND	and D N	DN	QN	- UN
	Native Sample	ab Associated sample(s): 0	ND	ND	QN	QN	ND	QN	QN	DN	ND	DN	QN	QN	QN	ΟN	Q	250	QN	Q	QN	QN	DN N
Project Name: WINDCHIME Project Number: BEA99-2252	Parameter	Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-05 Sample	Chloromethane	Bromomethane	Vinyl chloride	Chloroethane	1,1-Dichloroethene	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene1	Trichloroethene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	p/m-Xylene1	o-Xylene'	Xylene (Total) ¹	Styrene ¹	Acetone ¹	Carbon disulfide ¹	2-Butanone ¹	Vinyl acetate ¹	4-Methyl-2-pentanone ¹	2-Hexanone ¹

Page 24 of 63

ALPHA

Lab Duplicate Analysis Lab Number: L1732637 IE Batch Quality Control Report Date: 09/21/17	RPD Native Sample Duplicate Sample Units RPD Qual Limits	Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-05 QC Batch ID: WG1042186-5 QC Sample: L1732200-02 Client ID: DUP	ND vg/ NC	ND ug/I NC 30	ND UG/ NC 30	Acceptance %Recovery Qualifier %Recovery Qualifier Criteria	96 98 80-120 102 103 80-120 99 110 80-120
Project Name: WINDCHIME Project Number: BEA99-2252	Parameter	Volatile Organics by GC/MS - Westborough Lab Assoc	danipro segui antes antes de la contracta de la Acrolein ¹	Acrylonitrile ¹	Dibromomethane ¹	Surronate	Pentafluorobenzene Fluorobenzene 4-Bromofluorobenzene

Page 25 of 63

METALS

Project Name:	WIND	CHIME					Lab Nu	mber:	L173263	37	
Project Number:	BEA9	9-2252					Report	Date:	09/21/17	7	
				SAMPI	E RES	ULTS					
Lab ID: Client ID: Sample Location: Matrix:	B-2R	637-01 IPEE, MA					Date Co Date Re Field Pr	eceived:	09/13/1 09/14/1 Not Spe	7	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Sodium, Total	44.2		mg/l	2.00		1	09/19/17 15:1	8 09/20/17 23:18	B EPA 3005A	1,6010C	AB

Sodium, Total	52.0		mg/l	2.00		1	09/19/17 15:18	3 09/20/17 23:30	6 EPA 3005A	1,6010C	AB
Total Metals - Mans	field Lab										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Matrix:	Water	,					Field Pr	rep:	Not Sp	ecified	
Sample Location:	MASH	IPEE. MA									
Client ID:	MW-3	R						eceived:	09/14/1		
Lab ID:	L1732	2637-02					Date Co	ollected:	09/13/1	7 11:00	
				SAMP	LE RES	ULTS					
Project Number:	BEA9	9-2252					Report	Date:	09/21/1	17	
Project Name:	WINL	CHIME					Lab Nu	ımber:	L17326	537	

Sodium, Total	44.4		mg/l	2.00		1	09/19/17 15:1	8 09/21/17 00:0	4 EPA 3005A	1,6010C	AB
Total Metals - Mans	field I ab										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Matrix:	Water										
Sample Location:		IPEE, MA					Field Pr	ep:	Not Spe	cified	
Client ID:	MW-1						Date Re	eceived:	09/14/1	7	
Lab ID:	1 1732	637-03		SAMIFL		0210	Date Co	ollected:	09/13/1	7 13:05	
Project Number:	BEA9	9-2252		SAMPL			Report				
-		0.0050					Report	Date:	09/21/17	7	
Project Name:	WIND	CHIME					Lab Nu	mber:	L173263	37	

1

							Seria	al_No:09211	712:11	
WINE	CHIME					Lab Nu	mber:	L17326	37	
BEAS	9-2252					Report	Date:			
			SAMP	LE RES	ULTS	-				
L1732	2637-04					Date Co	ollected:	09/13/1	7 14 25	
MW-2	2					Date Re	eceived:			
MASH	IPEE, MA					Field Pr	ep:		-	
Water								not opt	Somea	
Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
	BEA9 L1732 MW-2 MASH Water	L1732637-04 MW-2 MASHPEE, MA Water	BEA99-2252 L1732637-04 MW-2 MASHPEE, MA Water	BEA99-2252 SAMP L1732637-04 MW-2 MASHPEE, MA Water	BEA99-2252 L1732637-04 MW-2 MASHPEE, MA Water	BEA99-2252 SAMPLE RESULTS L1732637-04 MW-2 MASHPEE, MA Water Dilution	BEA99-2252 Report SAMPLE RESULTS L1732637-04 Date Co MW-2 Date Re MASHPEE, MA Field Pr Water Dilution Date	WINDCHIME Lab Number: BEA99-2252 Report Date: SAMPLE RESULTS Date Collected: MW-2 Date Received: MASHPEE, MA Field Prep: Water Date	WINDCHIMELab Number:L17326BEA99-2252Report Date:09/21/1SAMPLE RESULTSL1732637-04Date Collected:09/13/1MW-2Date Received:09/14/1MASHPEE, MAField Prep:Not SpeceeeWaterDilutionDateDatePrep	BEA99-2252 Report Date: 09/21/17 SAMPLE RESULTS L1732637-04 Date Collected: 09/13/17 14:25 MW-2 Date Received: 09/14/17 MASHPEE, MA Field Prep: Not Specified Water Dilution Date Date Prep Analytical

9-2252 637-05		SAMPL	E RES	ULTS	Report I	Date:	09/21/17	7	
637-05		SAMPL	E RES	ULTS					
637-05									
					Date Co	llected:	09/13/17	7 13:55	
					Date Re	ceived:	09/14/17	7	
IPEE, MA					Field Pro	əp:	Not Spe	cified	
Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	IPEE, MA	IPEE, MA Qualifier Units	IPEE, MA Qualifier Units RL	IPEE, MA Qualifier Units RL MDL	IPEE, MA Dilution Qualifier Units RL MDL Factor	IPEE, MA Field Pre Dilution Date Qualifier Units RL MDL Factor Prepared	IPEE, MA Field Prep: Dilution Date Date Qualifier Units RL MDL Factor Prepared Analyzed	IPEE, MA Field Prep: Not Spe Dilution Date Date Prep Qualifier Units RL MDL Factor Prepared Analyzed Method	IPEE, MA Field Prep: Not Specified Dilution Date Date Prep Analytical Qualifier Units RL MDL Factor Prepared Analyzed Method Method

								Seria	al_No:09211	712:11	
Project Name:	WINE	CHIME					Lab Nu	mber:	L17326	337	
Project Number:	BEA9	9-2252					Report	Date:	09/21/1	7	
				SAMP	LE RES	BULTS					
Lab ID:	L1732	2637-06					Date Co	ollected:	09/13/1	7 11:15	
Client ID:	PZ-1F	र					Date Re	eceived:	09/14/1	7	
Sample Location:	MASH	IPEE, MA					Field Pr	ep:	Not Sp	acified	
Matrix:	Water							İ.		oomou	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Metals - Mansf	field Lab										
Sodium, Total	8.19		mg/l	2.00		1	09/19/17 15:18	3 09/21/17 00:18	3 EPA 3005A	1,6010C	AB

9-2252 637-07		SAMPL	.E RES	ULTS	Report		09/21/1		
		SAMPI	.E RES	ULTS	Data Ca				
					Data Ca		0011011		
					Date Co	llected:	09/13/1	7 12:00	
					Date Re	ceived:	09/14/1	7	
PEE, MA					Field Pr	ep:	Not Spe	ecified	
Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Qualifier	Qualifier Units	Qualifier Units RL	Qualifier Units RL MDL	Dilution Qualifier Units RL MDL Factor	Dilution Date Qualifier Units RL MDL Factor Prepared	Dilution Date Date Qualifier Units RL MDL Factor Prepared Analyzed	Dilution Date Date Prep Qualifier Units RL MDL Factor Prepared Analyzed Method	Dilution Date Date Prep Analytical Qualifier Units RL MDL Factor Prepared Analyzed Method Method

Project Name:	WIND	CHIME					Lab Nu	ımber:	L17326	37	
Project Number:	BEA9	9-2252					Report	Date:	09/21/1	7	
				SAMP	LE RES	BULTS					
Lab ID:	L1732	637-08					Date Co	ollected:	09/13/1	7 12:00	
Client ID:	PZ-3F	R					Date Re	eceived:	09/14/1	7	
Sample Location:	MASH	IPEE, MA					Field Pr	rep:	Not Spe	ecified	
Matrix:	Water							·			
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										-ivensitier
Sodium, Total	9.33		mg/l	2.00		1	09/19/17 15:18	8 09/21/17 00:2	8 EPA 3005A	1,6010C	AB

Project Name:	WINDCHIME	i	Lab Number:	L1732637
Project Number:	BEA99-2252		Report Date:	09/21/17
		Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Man	sfield Lab for sample(s):	01-08 E	Batch: W	G10433	803-1				
Sodium, Total	ND	mg/l	2.00		1	09/19/17 15:18	09/20/17 23:0	9 1,6010C	AB

Prep Information

Digestion Method: EPA 3005A

~	RPD Limits		20
L1732637 09/21/17	RPD RPD Qual Limits		a anna ann fòrd aguna a na anns an a móra annsainn
	RPD G	ц.	3
Lab Number: Report Date:	Recovery Limits	ent ID: B-2	75-125
Lal Re	Qual	-01 Clie	any important and the state of
sis ol	MSD Recovery %Recovery Qual Limits	QC Batch ID: WG1043303-3 QC Sample: L1732637-01 Client ID: B-2R	B
Matrix Spike Analysis Batch Quality Control	MSD Found	QC Sam	I
ix Spil tch Qua	Qual	3303-3	00.33
Matr Ba	MS MSD %Recovery Qual Found	ch ID: WG104	68
	MS Found		53.1
	MS Added	nple(s): 01-08	10
WINDCHIME BEA99-2252	Native Sample	Lab Associated sar	44.2
Project Name: Project Number:	Parameter	Total Metals - Mansfield Lab Associated sample(s): 01-08	Sodium, Total

L1732637 09/21/17	PD Limits	ALPHA
ber: tte:		
Lat Rej	RPD 11 Client ID:	
S S	Units L1732637-(mg/l	
Lab Duplicate Analysis Batch Quality Control	Attact Uplicate Sample Units RPD Qual QC Batch ID: WG1043303-4 QC Sample: L1732637-01 Client ID: B-2R 44.2	
Matino Samulo		
Project Name: WINDCHIME Project Number: BEA99-2252 Parameter	s - Mansfield Lab Associated sample(s): 01-08 otal	Page 38 of 63

INORGANICS & MISCELLANEOUS

Page 40 of 63

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID:	L1732637-01	Date Collected:	09/13/17 10:20
Client ID:	B-2R	Date Received:	09/14/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water	· · · · · · · · · · · · · · · · · · ·	,

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lat			A Astropologia						
Chloride	71.		mg/l	1.0		1		09/15/17 19:48		ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	09/15/17 15:30	09/15/17 18:52	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	09/14/17 20:58	121,4500NO3-F	MR
Nitrogen, Nitrate	0.873		mg/l	0.100	**	1	-		121.4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	09/18/17 23:30	09/20/17 00:18	121,4500NH3-H	AT
Phosphorus, Total	ND		mg/l	0.010	••••	1		09/19/17 18:36	121.4500P-E	SD
Phosphorus, Orthophosphate	ND		mg/l	0.005		1	-	09/15/17 02:23	121,4500P-E	VB

Lab Number: L1732637 Report Date:

09/21/17

Page 41 of 63

Serial_No:09211712:11

L1732637

09/21/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

Client ID: Sample Location: Matrix:	MW-3R MASHPEE, MA Water		Field P	eceived: rep:	09/14/17 Not Specified	
		Dilution	Date	Date	Analytical	A I

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - West	porough Lat)								
Chloride	82.		mg/l	1.0		1	-	09/15/17 19:49	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	09/15/17 15:30	09/15/17 18:53	121,4500NH3-BH	H AT
Nitrogen, Nitrite	ND		mg/l	0.050	•• -	1	-	09/14/17 20:59	121,4500NO3-F	MR
	0.867		mg/i	0.100		1	-	09/14/17 20:59	121,4500NO3-F	MR
Nitrogen, Nitrate	0.521		mg/l	0.300		1	09/18/17 23:30	09/20/17 00:21	121,4500NH3-H	AT
Nitrogen, Total Kjeldahl	ND		mg/l	0.010		1	09/19/17 12:40	09/19/17 18:37	121,4500P-E	SD
Phosphorus, Total			mg/l	0.005		1	-	09/15/17 02:25	121,4500P-E	VB
Phosphorus, Orthophosphate	ND		myn	0.000						

Lab Number:	L1732637
Report Date:	09/21/17

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

L	.ab ID:	L1732637-03	Date Collected:	09/13/17 13:05
C	Client ID:	MW-1	Date Received:	09/14/17
S	Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
N	/latrix:	Water	riola riop.	Het opbolliou

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat)						an a	Deserved to a second states	n satatan
Chloride	68.		mg/l	1.0		1		09/15/17 19:49	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	09/15/17 15:30		121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050		1			121,4500NO3-F	MR
Nitrogen, Nitrate	1.06		mg/l	0.100		1	-		121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	09/18/17 23:30		121,4500NH3-H	AT
Phosphorus, Total	ND		mg/l	0.010		1	09/19/17 12:40		121,4500P-E	SD
Phosphorus, Orthophosphate	0.011		mg/l	0.005	••••••••••••••••••••••••••••••••••••••	1	-	09/15/17 02:26	121,4500P-E	VB

L1732637

09/21/17

Lab Number:

Report Date:

Project Name: WINDCHIME

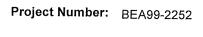
Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID:	L1732637-04	Date Collected:	09/13/17 14:25
Client ID:	MW-2	Date Received:	09/14/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westt	orough I at)								
Chloride	38.		mg/l	1.0		1	-	09/15/17 19:50	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	09/15/17 15:30	09/15/17 19:03	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	09/14/17 21:02	121,4500NO3-F	MR
Nitrogen, Nitrate	8.02		mg/l	0.200		2		09/14/17 22:40	121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	09/18/17 23:30	09/20/17 00:23	121,4500NH3-H	AT
Phosphorus, Total	1.56		mg/l	0.050		5	09/19/17 12:40	09/19/17 19:13	121,4500P-E	SD
Phosphorus, Orthophosphate	1.48		mg/l	0.010		2	-	09/15/17 02:26	121,4500P-E	VB

Page 44 of 63


Serial_No:09211712:11

Lab Number: L1732637 Report Date: 09/21/17

SAMPLE RESULTS

Lab ID:	L1732637-05	Date Collected:	09/13/17 13:55
Client ID:	MW-4	Date Received:	09/14/17
Sample Locatior	n: MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat				en e		San			
Chloride	56.		mg/l	1.0		- •	- Any Any and an and an and a share of the	09/15/17 19:51	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	09/15/17 15:30		121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050		1	_		121,4500NO3-F	
Nitrogen, Nitrate	0.716		mg/l	0.100		1	_		121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	09/18/17 23:30		121,4500NH3-H	AT
Phosphorus, Total	ND		mg/l	0.010		1	09/19/17 12:40		121,4500P-E	SD
Phosphorus, Orthophosphate	ND		mg/l	0.005	••••	1	-	09/15/17 02:27	121,4500P-E	VB

WINDCHIME

Project Name:

Lab Number: L1732637 Report Date:

09/21/17

Lab ID: Client ID: Sample Location: Matrix:	L1732637-06 PZ-1R MASHPEE, MA Water	Date Collected: Date Received: Field Prep:	09/13/17 11:15 09/14/17 Not Specified
--	--	--	---

SAMPLE RESULTS

Parameter	Result	Qualifier	Units	RL	MDL.	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Anaiyst
General Chemistry - Westt	porough Lat)								
Chloride	9.4	2 (second second se	mg/l	1.0		1	-	09/15/17 19:52	121,4500CL-E	ML
	ND		mg/l	0.075		1	09/15/17 15:30	09/15/17 19:05	121,4500NH3-BH	H AT
Nitrogen, Ammonia	ND		mg/l	0.050		1		09/14/17 21:25	121,4500NO3-F	MR
Nitrogen, Nitrite			<u> </u>	0.100		1		09/14/17 21:25	121,4500NO3-F	MR
Nitrogen, Nitrate	ND		mg/l	0.300			00/18/17 23:30	09/20/17 00:33	121,4500NH3-H	AT
Nitrogen, Total Kjeldahl	1.09		mg/l					09/19/17 18:42		SD
Phosphorus, Total	0.453		mg/l	0.010			09/19/17 12:40			VB
Phosphorus, Orthophosphate	0.009		mg/l	0.005		1	-	09/15/17 02:27	121,4500P-E	VD

Project Name: WINDCHIME

Project Number: BEA99-2252

L1732637

09/21/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID:	L1732637-07	Date Collected:	09/13/17 12:00
Client ID:	PZ-2R	Date Received:	
Sample Location:	MASHPEE, MA	Field Prep:	09/14/17 Not Specified
Matrix:	Water	rield riep,	Not opechied

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab						en an	an ka Waxaa maa Milaa N	an a	
Chloride	44.		mg/l	1.0	40-1366 (1-34) 	4.889.689.68998 1	144172-2022-2022-2022 	09/15/17 19:53	121,4500CL-E	ML
Nitrogen, Ammonia	ND		mg/l	0.075		1	09/15/17 15:30		121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050		1	_		121,4500NO3-F	MR
Nitrogen, Nitrate	12.7		mg/l	0.500		5			121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	1.55		mg/l	0.600		2	09/18/17 23:30		121,4500NH3-H	AT
Phosphorus, Total	2.25		mg/l	0.100				09/20/17 18:09	121,4500P-E	SD
Phosphorus, Orthophosphate	1.97		mg/l	0.025		5	-	09/15/17 02:28	121,4500P-E	VB

Page 47 of 63

Serial_No:09211712:11

Lab Number: L1732637 Report Date:

09/21/17

SAMPLE RESULTS

Lab ID: Client ID: Sample Location: Matrix:	L1732637-08 PZ-3R MASHPEE, MA Water	Date Collected: Date Received: Field Prep:	09/13/17 12:00 09/14/17 Not Specified	
--	--	--	---	--

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
	orough Lak									
General Chemistry - West			00000000000000000000000000000000000000	1.0		1	_	09/15/17 19:53	121,4500CL-E	ML
Chloride	8.5		mg/l	1.0		•		00454740.07		H AT
Nitrogen, Ammonia	ND		mg/l	0.075		1	09/15/17 15:30	09/15/17 19:07	121,4500NH3-B	
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	09/14/17 21:27	121,4500NO3-F	MR
	ND		mg/l	0.100		1	-	09/14/17 22:47	121,4500NO3-F	MR
Nitrogen, Nitrate	UN					4	00/40/47 22.20	09/20/17 00:35	121,4500NH3-H	AT
Nitrogen, Total Kjeldahl	1.84		mg/l	0.300						
Phosphorus, Total	5.06		mg/l	0.250		25	09/20/17 11:00	09/20/17 18:40	121,4500P-E	SD
Phosphorus, Orthophosphate	0.139		mg/l	0.005		1	-	09/15/17 02:28	121,4500P-E	VB

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab Number: L1732637 Report Date: 09/21/17

Client ID: SW-1	collected: eceived: rep:	09/13/17 11:20 09/14/17 Not Specified
-----------------	--------------------------------	---

SAMPLE RESULTS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat	n el statistic	n de tribute			an Anna Aonna M		ug bêrê, pir bi diştirana k	le de la companya de la compa	
Nitrogen, Ammonia	ND		mg/l	0.075		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	09/15/17 15:30	00/15/17 10:09	121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050		· · · · · · · · · · · · · · · · · · ·	-		121,4500NH3-BH	
Nitrogen, Nitrate	0.466		mg/l	0.100	•••	1				MR
Nitrogen, Total Kjeldahl	0.436		ma/l	0.300			-		121,4500NO3-F	MR
Phosphorus, Total	0.029		ma/l	0.010					121,4500NH3-H	AT
Phosphorus, Orthophosphate	ND				••••	1	09/20/17 11:00	09/20/17 16:39	121,4500P-E	SD
Theopholas, onnophosphate	שא		mg/l	0.005		1	-	09/15/17 02:29	121,4500P-E	VB

Project Name: WINDCHIME

Project Number: BEA99-2252

L1732637

09/21/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID: Client ID: Sample Location: Matrix:	L1732637-10 sw-2 MASHPEE, MA Water	Date Collected: Date Received: Field Prep:	09/13/17 11:55 09/14/17 Not Specified
--	---	--	---

Parameter	Result	Qualifier	Units	RL	MDL.	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	horough Lat)								
	borougit Lui	an na chadhlachte	mall	0.075		1	09/15/17 15:30	09/15/17 19:09	121,4500NH3-BH	I AT
Nitrogen, Ammonia	ND		mg/l						121,4500NO3-F	
Nitrogen, Nitrite	ND		mg/l	0.050		1				
	0.566		mg/i	0.100		1	-	09/14/17 21:30	121,4500NO3-F	MR
Nitrogen, Nitrate	0.000			0.300		1	09/18/17 23:30	09/20/17 00:37	121,4500NH3-H	AT
Nitrogen, Total Kjeldahl	0.366		mg/l	0.300		•				SD
Phosphorus, Total	0.087		mg/l	0.010		1	09/20/17 11:00	09/20/17 16:43		
Phosphorus, Orthophosphate	0.040		mg/l	0.005		1	-	09/15/17 02:29	121,4500P-E	VB

Lab Number: L1732637 Report Date: 09/21/17

Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID:	L1732637-11
Client ID:	SW-3
Sample Location:	MASHPEE, MA
Matrix:	Water

Date Collected:	09/13/17 12:25
Date Received:	09/14/17
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat)				an san tan tan		a de ala salar est	and factor for the second second	
Nitrogen, Ammonia	ND		mg/l	0.075	ana tribula di: 	2010/2017/2010/2010 1	00/45/47 45:00	00/45/47 40.00		전화회상철관
Nitrogen, Nitrite	ND		ma/l	0.050		· · · · · · · · · · · · · · · · · · ·	09/15/17 15:30		121,4500NH3-BH	AT
			ing/i	0.050		1	-	09/14/17 21:31	121,4500NO3-F	MR
Nitrogen, Nitrate	0.302		mg/l	0.100		1	-	09/14/17 21:31	121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	0.507		mg/l	0.300		1	09/19/17 13:00		121,4500NH3-H	AT
Phosphorus, Total	0.096		ma/l	0.010		1		09/20/17 16:44		
Phosphorus, Orthophosphate	0.017				· ···· · · ···		08/20/17 11.00	09/20/17 10:44	121,4500P-E	SD
r noophoras, orthophosphate	0.017		mg/l	0.005		1	-	09/15/17 02:29	121,4500P-E	VB

Project Name: WINDCHIME

L1732637

09/21/17

Lab Number:

Report Date:

Project Name:WINDCHIMEProject Number:BEA99-2252

Method Blank Analysis

Batc	h Qua	lity C	ontrol	
------	-------	--------	--------	--

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	thorough Lab for sam	nple(s): 01	-11 Bat	ch: WC	61041892-1				
Nitrogen, Nitrate	ND	mg/l	0,100		1	-	09/14/17 21:07	121,4500NO3-F	MR
General Chemistry - Wes	tborough Lab for sam	nple(s): 01	I-11 Bat	ch: WC	€1041893-1				
Nitrogen, Nitrite	ND	mg/l	0.050		1	-	09/14/17 21:09	121,4500NO3-F	MR
General Chemistry - Wes	tborough Lab for sam	nple(s): 0 ⁻	I-11 Bat	ch: W	31041952-1				
Phosphorus, Orthophosphate	ND	mg/l	0.005		1	-	09/15/17 02:18	121,4500P-E	VB
General Chemistry - Wes	tborough Lab for san	nple(s): 0 ⁻	1-08 Bat	tch: W	G1042215-1				
Chloride	ND	mg/l	1.0		1	ei	09/15/17 19:31	121,4500CL-E	ML
General Chemistry - Wes	stborough Lab for san	nple(s): 0	1-11 Ba	tch: W	G1042225-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	09/15/17 15:30	09/15/17 18:29	121,4500NH3-B	H AT
General Chemistry - Wes	stborough Lab for san	nple(s): 0	1-10 Ba	tch: W	G1043001-1				
Nitrogen, Total Kjeldahl	[^] ND	mg/l	0.300		1	09/18/17 23:30	09/20/17 00:15	121,4500NH3-H	I AT
General Chemistry - Wes	stborough Lab for sar	nple(s): 0	1-06 Ba	tch: W	G1043112-'	1			
Phosphorus, Total	ND	mg/l	0.010		1	09/19/17 12:40	09/19/17 18:07	7 121,4500P-E	SD
General Chemistry - We	stborough Lab for sar	nple(s): 1	1 Batch	: WG1	043205-1				
Nitrogen, Total Kjeldahl	ND	mg/i	0.300		1	09/19/17 13:00	09/20/17 23:03	7 121,4500NH3-	H AT
General Chemistry - We	stborough Lab for sar	mple(s): 0	7-11 Ba	tch: W	G1043570-	1			
Phosphorus, Total	ND	mg/l	0.010		1	09/20/17 11:00	09/20/17 16:3	1 121,4500P-E	SD

Project Name: Project Number:	WINDCHIME BEA99-2252	Ľ	Lab Control Sample Analysis Batch Quality Control	alysis	Lab Number: Report Date:	L1732637 09/21/17
Parameter		LCS %Recovery Qual	LCSD %Recoverv Oual	%Recovery I imite		
General Chemistry - V	Vestborough Lab As	(s)	4189	2	Qual	KPD LIMIts
Nitrogen, Nitrate		98		90-110		
General Chemistry - Westborough Lab Associated sample	Vestborough Lab Ass	(s): 01-11	Batch: WG1041893-2			
Nitrogen, Nitrite				90 -11 0		
General Chemistry - Westborough Lab Associated sample(Vestborough Lab Ass	s): 01-11	Batch: WG1041952-2			
Phosphorus, Orthophosphate	hate	101: 1 1		90-110		
General Chemistry - W	Vestborough Lab_Ass	General Chemistry - Westborough Lab Associated sample(s): 01-08	Batch: WG1042215-2			
Chloride	anno a Mar da farinnna a . Na a na pro infarina a mare e etc.e e	107		90-110		
General Chemistry - M	/estborough Lab_Ass	General Chemistry - Westborough Lab Associated sample(s): 01-11	Batch: WG1042225-2			
Nitrogen, Ammonia			· · · · ·	80-120		20 20
General Chemistry - M	lestborough Lab Ass	General Chemistry - Westborough Lab Associated sample(s): 01-10 Batch: WG1043001-2	Batch: WG1043001-2			
Nitrogen, Total Kjeldahl				78-122		
General Chemistry - W	estborough Lab Ass	General Chemistry - Westborough Lab Associated sample(s): 01-06	Batch: WG1043112-2			
Phosphorus, Total		101	· · ·	80-120	1	
					· · · · · · · · · · · · · · · · · · ·	1

Page 52 of 63

ALPHA

Serial_No:09211712:11

er: L1732637 .e: 09/21/17	RPD Limits				
Lab Number: Report Date:	RPD	·	•		
Analysis ol	%Recovery Limits	78-122	80-120		
Lab Control Sample Analysis Batch Quality Control	LCSD %Recovery	Batch: WG1043205-2	-11 Batch: WG1043570-2		
	LCS %Recovery	sociated sample(s): 11 98	sociated sample(s): 07- 1 ⁰¹		
Project Name: WINDCHIME Project Number: BEA99-2252	Parameter	General Chemistry - Westborough Lab Associated sample(s): 11 Nitrogen, Total Kjeldahl			

Page 53 of 63

ALPHA

Project Name: Project Number:	WINDCHIME BEA99-2252			Matrix Batch	Matrix Spike Analysis Batch Quality Control	sis ol	Lab Number: Report Date:	L1732637 09/21/17
Parameter	Native Sample	MS Added	MS Found	MS %Recovery G	MSD Qual Found	MSD %Recovery Oud	Recovery Limito	RPD 1 Imito
General Chemistry - Westborough Lab Associated sampl Nitrogen, Nitrate 0.716 4	estborough Lab Asso 0.716	ociated samp	ile(s): 01-11 4.34	QC Batch ID: WG1041892-4	NG1041892-4	QC Sample: L1732	337-05 Clier 83-113	- 19 Q
General Chemistry - Westborough Lab Associated sampl Nitrogen, Nitrite 4	sstborough Lab Asso ND	ociated samp 4	le(s): 01-11 3.35	QC Batch ID: WG1041893-4 84 -	NG1041893-4	QC Sample: L1732 -	QC Sample: L1732637-05 Client ID: MW-4 - 80-120 -	
General Chemistry - Westborough Lab Associated sample(s): 01-11 Phosphorus, Orthophosphate ND 0.5 0.517	sstborough Lab Asso ate ND	ociated samp ^{0.5}	le(s): 01-11 ^{0.517}	QC Batch ID: WG1041952-4 103 -	VG1041952-4	QC Sample: L1732637-02 Client ID: MW-3R 	637-02 Client ID: 80-120 -	
General Chemistry - Westborough Lab Associated sample(s): 01-08 Chloride 1.4 20 22	sstborough Lab Assc 1.4	ociated samp	le(s): 01-08 ²²	QC Batch ID: WG1042215-4 103 -	VG1042215-4	QC Sample: L1731919-01 Client ID: MS Sample - 58-140 - 7	919-01 Client ID: 58-140 -	MS Sample
General Chemistry - Westborough Lab Associated sample(s): 01-11 Nitrogen, Ammonia ND 4 3.82	stborough Lab Asso ND	ociated samp	le(s): 01-11 ^{3.82}	QC Batch ID: WG1042225-4	VG1042225-4	QC Sample: L1732035-02 - 80-120	035-02 Client ID: 80-120 -	Client ID: MS Sample - 20
General Chemistry - Westborough Lab Associated sample(s): 01-10 Nitrogen, Total Kjeldahl ND 8	stborough Lab Asso ND	iciated sampl	e(s): 01-10 7.64	QC Batch ID: WG1043001-4	VG1043001-4	QC Sample: L1732637-01 Client ID: B-2R - 77-111 -	637-01 Client ID: 77-111 -	B-2R
General Chemistry - Westborough Lab Associated sample(s): 01-06 Phosphorus, Total 0.138 0.5 0.630	stborough Lab Asso 0.139	ciated sampl	e(s): 01-06 ^{0.630}	QC Batch ID: WG1043112-3 98 -	VG1043112-3 -	QC Sample: L1732034-02 Client ID: MS Sample - 75-125 - 20	034-02 Client ID: 75-125 -	MS Sample
General Chemistry - Westborough Lab Associated sample(s): 11 Nitrogen, Total Kjeldahl 0.507 8 7.86	stborough Lab Asso 0.507	ciated sampl ⁸		IC Batch ID: WG1	043205-4 QC	QC Batch ID: WG1043205-4 QC Sample: L1732637-11 Client ID: SW-3 ⁹² - 77-111 -	-11 Client ID: SV 77-111 -	V-3
General Chemistry - Westborough Lab Associated sample(s): 07-11 Phosphorus, Total 2.25 1 3.33	stborough Lab Asso 2.25	ciated sampl	e(s): 07-11 3.33	QC Batch ID: W 108	/G1043570-3 -	QC Batch ID: WG1043570-3 QC Sample: L1732637-07 Client ID: PZ-2R 108	337-07 Client ID: 75-125 -	PZ-2R

Page 54 of 63

Project Name: WINDCHIME Project Number: BEA99-2252	Lab Du Batc	Lab Duplicate Analysis Batch Quality Control	ŝis	Lab Rep	Lab Number: Report Date:	L1732637 09/21/17
Parameter	Native Sample Dr	Duplicate Sample	Units	RPD	Qual RI	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01-11		QC Batch ID: WG1041892-3 QC	Sample: L1	732637-05	Sample: L1732637-05 Client ID: MW-4	1-4
	0.716	0.769	l/ĝm	7		17
General Chemistry - Westborough Lab Associated sample(s): 01-11		QC Batch ID: WG1041893-3 QC	Sample: L1	732637-05	Sample: L1732637-05 Client ID: MW-4	V-4
version et la recta realization de la construction de la construction de la construction de la construction de Nitrogen, Nitrite	Ŋ	QN	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 01-11		QC Batch ID: WG1041952-3 QC	Sample: L1	732637-02	QC Sample: L1732637-02 Client ID: MW-3R	V-3R
Phosphorus, Orthophosphate	Q	DN	mg/l	NC	a second s	20
General Chemistry - Westborough Lab Associated sample(s): 01-08		QC Batch ID: WG1042215-3 QC	Sample: L1	731919-01	QC Sample: L1731919-01 Client ID: DUP Sample	IP Sample
Chloride	1.4	1.5	l/gm	7		7
General Chemistry - Westborough Lab Associated sample(s): 01-11		QC Batch ID: WG1042225-3 Q0	Sample: L1	732035-02	QC Sample: L1732035-02 Client ID: DUP Sample	IP Sample
	QN	Ŋ	l/gm	NC		20
General Chemistry - Westborough Lab Associated sample(s): 01-10		QC Batch ID: WG1043001-3 Q0	QC Sample: L1732637-01 Client ID:	732637-01	Client ID: B-2R	2R
Nitrogen, Total Kjeldahl	QN	QN	mg/l	NC		24
General Chemistry - Westborough Lab Associated sample(s): 01-06 QC Batch ID: WG1043112-4	01-06 QC Batch ID:		Sample: L	1732034-02	QC Sample: L1732034-02 Client ID: DUP Sample	JP Sample
Phosphorus, Total	0.139	0.134	mg/l	4	a and an and a set of the set of the set of the set of the	20
General Chemistry - Westborough Lab Associated sample(s): 11 QC Batch ID: WG1043205-3	11 QC Batch ID: W		ample: L173	2637-11 Cli	QC Sample: L1732637-11 Client ID: SW-3	
	0.507	0.465	mg/l	0		24
General Chemistry - Westborough Lab Associated sample(s): 07-11		QC Batch ID: WG1043570-4 Q	C Sample: L	1732637-07	QC Sample: L1732637-07 Client ID: PZ-2R	<u>r-</u> 2R
	2.25	2.37	l/gm	2		20

Page 55 of 63

WINDCHIME	BEA99-2252
^{>} roject Name:	^o roject Number:

Sample Receipt and Container Information

YES

specified?	
limits	
Were project specific reporting I	

Cooler Information

Custody Seal	Absent
Cooler	В

Container Information

Analysis(*)

Frozen Date/Time

Container Information	rmation		lcitiul	Final	Tomn		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal
L1732637-01A	Plastic 250ml unpreserved	в	7	7	3.7	≻	Absent
L1732637-01B	Plastic 250ml HNO3 preserved	в	ų	Ŷ	3.7	≻	Absent
L1732637-01C	Plastic 500ml H2SO4 preserved	ß	Ϋ́	₽	3.7	≻	Absent
L1732637-02A	Plastic 250ml unpreserved	в	7	7	3.7	≻	Absent
L1732637-02B	Plastic 250ml HNO3 preserved	в	ų	Q	3.7	≻	Absent
L1732637-02C	Plastic 500ml H2SO4 preserved	В	б	ų	3.7	≻	Absent
L1732637-02D	Vial Na2S203 preserved	ß	NA		3.7	≻	Absent
L1732637-02E	Vial Na2S203 preserved	В	NA		3.7	≻	Absent
L1732637-02F	Vial Na2S2O3 preserved	ш	NA		3.7	≻	Absent
L1732637-03A	Plastic 250ml unpreserved	ß	7	7	3.7	≻	Absent
L1732637-03B	Plastic 250ml HNO3 preserved	ш	8	₽	3.7	≻	Absent
L1732637-03C	Plastic 500ml H2SO4 preserved	۵	ç,	Q	3.7	≻	Absent
L1732637-03D	Vial Na2S2O3 preserved	æ	NA		3.7	≻	Absent
L1732637-03E	Vial Na2S2O3 preserved	В	NA		3.7	≻	Absent
L1732637-03F	Vial Na2S2O3 preserved	8	NA		3.7	≻	Absent
L1732637-04A	Plastic 250ml unpreserved	ß	7	7	3.7	≻	Absent
L1732637-04B	Plastic 250ml HNO3 preserved	В	Ŷ	8	3.7	≻	Absent
L1732637-04C	Plastic 500ml H2SO4 preserved	В	Ϋ́	₽ ₽	3.7	≻	Absent
L1732637-04D	Vial Na2S203 preserved	8	NA		3.7	≻	Absent
L1732637-04E	Vial Na2S203 preserved	В	NA		3.7	≻	Absent
L1732637-04F	Vial Na2S2O3 preserved	ß	NA		3.7	≻	Absent

*Values in parentheses indicate holding time in days

63
đ
56
Page
· · · ·

Lab Number: L1732637 Report Date: 09/21/17 Serial_No:09211712:11

OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2) M4_T1/480/
TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2) NA-TI(180)
TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
624(3)
624(3)
624(3)
OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2) NA-TI(180)
TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
624(3)
624(3)
624(3)
OPHOS-4500(2), CL-4500(28), NO3- 4500(2), NO2-4500NO3(2)
NA-TI(180)
TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
624(3)
624(3)

624(3)

ALPHA

Frozen	Date/Time Analysis(*)	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)	NA-TI(180)	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)	624(3)	624(3)	624(3)	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)	NA-TI(180)	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)	NA-TI(180)	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)	NA-TI(180)	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)	OPHOS-4500(2),NO3-4500(2),NO2- 4500NO3(2)	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)	OPHOS-4500(2),NO3-4500(2),NO2- 4500NO3(2)	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)	OPHOS-4500(2),NO3-4500(2),NO2- 4500NO3(2)	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
Fro	Dat						+	t	t.	ŧ	ıt	t	t	ıt	t	¥	t	t	nt	nt	nt	nt
	Seal	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Pres	≻	≻	≻	۲	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻	≻
Tomp		3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Final	рН	7	8	8				7	8	8	7	8	☆		8	۲ ۲	7	8	7	\$	7	8
1	рН	7	ų	г	NA	NA	NA	7	ų	₽	7	8	\$	- 2	8	8	7	8	7	8	7	8
	Cooler	В	в	в	в	В	۵	ш	ß	۵	В	ß		a m	8		£	മ	ß	а	£	В
, motion	Container Type	Plastic 250ml unpreserved	Plastic 250ml HNO3 preserved	Plastic 500ml H2SO4 preserved	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial Na2S203 preserved	Plastic 250ml unpreserved	Plastic 250ml HNO3 preserved	Plastic 500ml H2SO4 preserved	Plastic 250ml unpreserved	Disstic 250ml HNO3 preserved		Plastic 250ml unpreserved	Diactic 250ml HNO3 presented		Plastic 250ml unpreserved	Disetic 500ml H2SO4 nreserved	Plastic 250ml unpreserved	plastic 500ml H2SO4 nreserved	Plastic 250ml unpreserved	Plastic 500ml H2SO4 preserved
noitement version	Container ID	L1732637-05A	1 1732637-05B	L1732637-05C	L1732637-05D	L1732637-05E	L1732637-05F	L1732637-06A	1 1737637_06B	L1/32637-06C	L1732637-07A	070 700007 1	L1/3Z03/-U/B	L1732637-07C L1732637-08A		L1/3203/-U0D	L1/3263/-00C	000 1000011	L1732637-090	14700607 100	L1732637-100	L1732637-11C

Serial_No:09211712:11 Lab Number: L1732637 Report Date: 09/21/17

Project Name:WINDCHIMEProject Number:BEA99-2252

*Values in parentheses indicate holding time in days

Project Name: WINDCHIME

Project Number: BEA99-2252

Serial_No:09211712:11

Lab Number: L1732637 **Report Date:** 09/21/17

GLOSSARY

Acronyms	CLOBOAN
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	 Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	 Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the 1 original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-

preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that В have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

L1732637

Project Name: WINDCHIME

Project Number: BEA99-2252

Report Date:	09/21/17

Lab Number:

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1732637 Report Date: 09/21/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

 Westborough Facility

 EPA 624: m/p-xylene, o-xylene

 EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

 EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

 EPA 800: DW: Bromide

 EPA 6860: NPW and SCM: Perchlorate

 EPA 9010: NPW: Noted Cyanide Distillation

 EPA 9050A: NPW: Specific Conductance

 SM3500: NPW: Ferrous Iron

 SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

 SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colliert-QT,SM9222D.

Non-Potable Water SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-

06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colliert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

COLLER CONTRACT

CHAIN OF Membrony, M. CHAIN OF CUENTIODY Membrony, M. CHAIN OF Membrony, M. Membrony, M. Membrony, M. Project Information Membrony, M. Membrony, M. Membrony, M. TE. Sobesson TE. Sobesson TE. Sobesson Fixe Sobesson Exercises Project Location: Mash Project Manager. David Project Manager. David Membrony, Mash Mutantion Matheway David David David Date Matheway Matheway Due Date: Time Starrenkopr@bennett-ea.com Due Date: Time Date Other Project Specific Requirements/Comments/Detection Limits: Due Date: Time Date Matheway Mary and Mark Due Date: Time Date AltPHA Lab ID Sample ID Due Date: Time Date AltPHA Lab ID Sample ID Due Date: Time Date Or Date Date Time Date Diete Or Date Date Time Date Diete	CUSTODY PAGE 1 OF 2 Project Information Project Incimation Project Name: Windchime Project Location: Mashpee, MA Project Location: Mashpee, MA Project Location: Mashpee, MA Project Location: Mashpee, MA Project Location: Mashpee, MA Project Manager: David C. Bennett A Project Manager: David C. Bennett Introduction Introduction Sample Standard Inskh (onkry F Pre_APPROVED) Due Date: Time: Date:	Date Rec din Lat:	
FORM MO: ೧೬-೧೯/೬೩) (ಜ್ವಾ ಸಿಲಿಸಿ ರುಗ	1-13		1 4120 start thut any ambiguites are resolved All samples submitted are subject to Alpha's Payment Terms
Page 62 of 63	Konsel alietto 18	- A Smelle Work 9/14 17	<u>}</u>]i

		1 1	
	COULDI PAGE 2 OF 2		ALPHA JOD #: 11 150651
CUPHA	Project Information	Information	ling Information
Westborough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-822-8300	Project Name: Windchime	□ FAX △ EWAIL □ ADEX □ Add'l Deliverables	X Same as Client into PO #: 2252
		: د د د	
Client Information	Project Location: Mashpee, MA	kegulatory kequirements/keport Limits State/Fed Program	s Criteria
Client: Bennett Environmental Associates	Project #: BEA99-2252		
Address: 1573 Main Street / P.O. Box 1743	Project Manager: David C. Bennett		
Brewster, MA 02631	ALPHA Quote #:		
Phone: 508-896-1706	Turn-Around Time		
Fax: 508-896-5109	Standard 🛛 🗆 Rush (oNLY IF PRE-APPROVED)	ANALYSIS	SAMPLE HANDLING
Email: sfarrenkopf@bennett-ea.com			Filtration L
These samples have been Previously analyzed by Alpha	Due Date: Time:		Not Needed
Other Project Specific Requirements/Comments/Detection Limits:	/Detection Limits:		Lab to do B Preservation O
		S	
		Phos Phos	(Please specify E below)
ALPHA Lab ID (Lab Use Only)	Collection Sample Sampler's Date Time Matrix Initials	гаłе, И СНИ ,И	
			Sample Specific Comments
53637-09 sw-1	9/13/17 11:20 SW (JJS)		2
10 SW-2	9/13/17 11:55 SW GJB		
11 SW-3	9/13/17 12:25 SW (2513		
	Container Type	, , , , , ,	•
	Preservative	o	Please print clearly, legibly and completely. Samples can
	Refinguished By:	Date/Time Received By:	Date/Time turnaround time clock will not
	the man all	1/2 4:20 Frdge 91	13/17 41:00 start until any ambiguities are resolved. All samples
FGANI NO: OPOTIANI) (ree: 23-AFR-03)		17 7:53 MSV 101-11	1 2 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Page 63 of 63	Upper y King	13-1 Londer Mar	ally mile

н

ANALYTICAL REPORT

Lab Number:	L1745363
Client:	Bennett Environmental Associates 1573 Main Street Brewster, MA 02631
ATTN: Phone:	David Bennett (508) 896-1706
Project Name:	WINDCHIME
Project Number:	BEA99-2252
Report Date:	12/15/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

WINDCHIME	:: BEA99-2252
Project Name:	Project Number:

Alpha			Sample	Collection	Receive Date
Sample ID	Client ID	Matrix	Location		
L1745363-01	B-2R	WATER	MASHPEE, MA	12/07/17 14:40	12/08/17
L1745363-02	MW-3R	WATER	MASHPEE, MA	12/07/17 13:45	12/08/17
L1745363-03	MW-1	WATER	MASHPEE, MA	12/07/17 11:45	12/08/17
L1745363-04	MW-2	WATER	MASHPEE, MA	12/07/17 13:05	12/08/17
L1745363-05	MW-4	WATER	MASHPEE, MA	12/07/17 12:30	12/08/17
L1745363-06	PZ-1R	WATER	MASHPEE, MA	12/07/17 10:00	12/08/17
L1745363-07	PZ-2R	WATER	MASHPEE, MA	12/07/17 10:40	12/08/17
L1745363-08	PZ-3R	WATER	MASHPEE, MA	12/07/17 10:35	12/08/17
L1745363-09	SW-1	WATER	MASHPEE, MA	12/07/17 10:05	12/08/17
L1745363-10	SW-2	WATER	MASHPEE, MA	12/07/17 10:50	12/08/17
L1745363-11	SW-3	WATER	MASHPEE, MA	12/07/17 11:05	12/08/17

Serial_No:12151712:13

L1745363 12/15/17

Lab Number: Report Date:

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1745363 Report Date: 12/15/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab Number: L1745363 Report Date: 12/15/17

Case Narrative (continued)

Sample Receipt

L1745363-07: The collection date and time on the chain of custody was 07-DEC-17 10:40; however, the collection date/time on the container label was 07-DEC-17 10:50. At the client's request, the collection date/time is reported as 07-DEC-17 10:40.

L1745363-10: The collection date and time on the chain of custody was 07-DEC-17 10:50; however, the collection date/time on the container label was 07-DEC-17 10:40. At the client's request, the collection date/time is reported as 07-DEC-17 10:50.

Phosphorus, Total

L1745363-02: The Orthophosphate result is slightly higher than the Total Phosphorous result; however, the sample result is less than five times the reporting limit. Therefore, no further action was taken.

Nitrogen, Total Kjeldahl

L1745363-04: The sample has an elevated detection limit due to the dilution required by the sample matrix.

Nitrogen, Ammonia

The WG1071271-3 Laboratory Duplicate RPD (25%), performed on L1745363-01, is above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Face John Kara Soroko

Title: Technical Director/Representative

Date: 12/15/17

METALS

Total Metals - Mansfi	- 1 - 1 - 1 - 1-										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Matrix:	Water										
Sample Location:	MASH	IPEE, MA				Field Prep:			Not Specified		
Client ID:	B-2R						Date Re		12/08/1		
Lab ID:	L1745	363-01					Date Co	llected:	12/07/1		
				SAMPL	E RES	ULTS					
Project Number:	BEA99	9-2252					Report	Date:	12/15/17	7	
Project Name:	WIND	CHIME					Lab Nu	nber:	L174536	53	

Sodium, Total	40.7		mg/l	2.00			12/14/17 11:3) 12/14/17 19:50	EPA 3005A	1.6010C	AB
Total Metals - Mans	field Lab										Herviler
Parameter	Result	Qualifier	Units	RL	MDL.	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Matrix:	Water							•			
Sample Location:	MASH	IPEE, MA					Field Prep:		Not Spe		
Client ID: Sample Locatior	MW-3	R					Date Re	eceived:	12/08/1	7	
Lab ID:	L1745	5363-02					Date Co	ollected:	12/07/1	7 13:45	
				SAMP	LE RES	ULTS					
Project Number:	BEA9	9-2252					Report	Date:	12/15/1	7	
Project Name:	WINE	CHIME					Lab Nu	mber:	L17453	63	

Report Da Date Colle Date Rece Field Prep	ected: eived:	12/08/1	7 11:45			
Date Rece	eived:	12/08/1				
Date Rece	eived:	12/08/1				
			7			
Field Prep	p:	Not Sno	12/08/17			
		Not Specified				
Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
P						

Project Name:	WIND	CHIME					Lab Nı	ımber:	L17453	63	
Project Number:	BEA9	9-2252					Report	Report Date:		7	
				SAMP	LE RES	ULTS					
Lab ID:	L1745	363-04					Date C	ollected:	12/07/1	7 13:05	
Client ID:	MW-2						Date R	eceived:	12/08/1	7	
Sample Location:	MASH	IPEE, MA					Field Pi	rep:	Not Spe		
Matrix:	Water							•.			
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Sodium, Total	47.5		mg/l	2.00		1	12/14/17 11:3	0 12/14/17 19:5	9 EPA 3005A	1.6010C	AB

Project Name:	WIND	CHIME					Lab Nu	mber:	L174536	63	
Project Number:	BEA9	9-2252					Report	Date:	12/15/1	7	
-				SAMPI	E RES	ULTS					
Lab ID:	L1745	363-05					Date Co	ollected:	12/07/1	7 12:30	
Client ID:	MW-4						Date Re	eceived:	12/08/1	7	
Sample Location:	MASH	IPEE, MA					Field Pr	ep:	Not Spe	ecified	
Matrix:	Water							·			
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Sodium, Total	31.7		mg/l	2.00		1	12/14/17 11:30	0 12/14/17 20:04	EPA 3005A	1,6010C	AB

Sodium, Total	9.35		mg/l	2.00		1	12/14/17 11:30	0 12/14/17 20:09	9 EPA 3005A	1,6010C	AB
Total Metals - Mans	field Lab										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Matrix:	Water							·			
Sample Location:	MASH	IPEE, MA					Field Pr	rep:	Not Sp	ecified	
Client ID:	PZ-1F	र					Date Re	eceived:	12/08/1	7	
Lab ID:	L1745	5363-06					Date Co	ollected:	12/07/1	7 10:00	
				SAMP	LE RES	ULTS					
Project Number:	BEAS	9-2252					Report	Date:	12/15/1	7	
Project Name:	WINE	CHIME					Lab Nu	mber:	L17453	363	

Sodium, Total	51.4		mg/l	2.00		1	12/14/17 11:3	0 12/14/17 20:2	7 EPA 3005A	1,6010C	AB
Total Metals - Mans	field Lab										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Matrix:	Water										
Sample Location:	MASH	IPEE, MA					Field Pr	ep:	Not Spe	ecified	
Client ID:	PZ-2R	2					Date Re	eceived:	12/08/1	7	
Lab ID:	L1745	363-07		UAM I		0210	Date Co	llected:	12/07/1	7 10:40	
Floject Number.	DLAS	5-2252		SAMPI	F RES						
Project Number:	REAG	9-2252					Report	Date:	12/15/17	7	
Project Name:	WIND	CHIME					Lab Nu	mber:	L174536	53	

Sodium, Total	7.97		mg/l	2.00	9799999999 	rstaans feat N 1		0 12/14/17 20:32		1.6010C	AB
Total Metals - Mans	field Lab								una e la tra arte	na ang kalina kalina ka	en diservices
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Matrix:	Water							001	Not opt	Somea	
Sample Location:	MASH	IPEE, MA					Field Pr	en.	Not Spe	acified	
Client ID:	PZ-3F	र					Date Re	eceived:	12/08/1	7	
Lab ID:	L1745	5363-08					Date Co	ollected:	12/07/1	7 10:35	
				SAMP	LE RES	ULTS					
Project Number:	BEA9	9-2252					Report	Date:	12/15/1	7	
Project Name:	WINE	CHIME					Lab Nu	ımber:	L17453	63	

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1745363

Report Date: 12/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Man	sfield Lab for sample(s):	01-08 B	atch: W	/G10726	58-1				
	ND	mg/l	2.00		4	12/14/17 11:30	12/14/17 18:3	6 1,6010C	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: Project Number: Total Metals - Mansfield Sodium, Total	Lab Col Project Name: WNDCHIME Project Number: BEA99-2252 Project Number: BEA99-2252 Project Number: BEA99-2252 Total Metals - Mansfield Lab Associated sample(s): 01-08 Batch: WG1072668-2 Sodium. Total 102	LCS %Recovery a(s): 01-08 Batc	Lab MG1072e	Lab Control Sample Analysis Batch Quality Control LCSD %Reco 1072658-2 Qual Limi - 80-12	ontrol Sample An Batch Quality Control Recovery Qual	Malysis Limits 80-120	Lab Ni RPD -	Lab Number: Report Date: PD Qual	L1745363 12/15/17 RPD Limits
Page 15 of 42									Ацяна

Project Name: Project Number:	WINDCHIME BEA99-2252			Matrix Batch	Matrix Spike Analysis Batch Quality Control	lalysis ontrol	Lat Re _f	Lab Number: Report Date:	L1745363 12/15/17
Parameter	Native Sample	MS Added	MS Found	MS %Recovery Q	MSD Qual Found		MSD R %Recovery Qual	Recovery Limits RPI	RPD Qual Limits
otal Metals - Mansfiel sodium Total	Total Metals - Mansfield Lab Associated sample(s): 01-08	mple(s): 01-08 10				Samp	1000000	Client ID: B-2R 75-125 -	50
						-			

Page 16 of 42

ALPHA

363 17			
L1745363 12/15/17	RPD Limits	8	ALPHA
Lab Number: Report Date:			
Lab Number: Report Date:	nt ID: B-2		
	RPD 3-01 Client II		
<u>s</u> .	Units L174536		
Lab Duplicate Analysis Batch Quality Control	Duplicate Sample 2658-4 QC Sample:	1.1.1	
ab Dupl Batch (Dupli G1072658-4		
	Native Sample	47 16	
	N (s): 01-08		
WINDCHIME BEA99-2252	Parameter Native Sample Duplicate Sample Units RPD Qual Total Metals - Mansfield Lab Associated sample(s): 01-08 QC Batch ID: WG1072658-4 QC Sample: L1745363-01 Client ID: B-2R		
	ansfield La		
Project Name: Project Number:	Parameter Total Metals - M	Sodium, Total	Page 17 of 42

INORGANICS & MISCELLANEOUS

Lab Number: L1745363 Report Date: 12/15/17

Lab ID:	L1745363-01	Date Collected:	12/07/17 14:40
Client ID:	B-2R	Date Received:	12/08/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water	,	

SAMPLE RESULTS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	tborough Lat) 999-997(55		le tipogo a const					en en el la julia.	
Chloride	70.		mg/i	1.0		1	-	12/12/17 23:42		TL
Nitrogen, Ammonia	0.154		mg/l	0.075		1	12/11/17 12:08	12/11/17 21:09	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	12/09/17 01:07	121,4500NO3-F	MR
Nitrogen, Nitrate	0.763		mg/l	0.100		1	-	12/09/17 01:53	121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	12/12/17 13:00	12/14/17 15:32	121,4500NH3-H	JO
Phosphorus, Total	ND		mg/l	0.010		1	12/11/17 13:15	12/12/17 12:57	121,4500P-E	SD
Phosphorus, Orthophosphate	ND		mg/l	0.005		1	-	12/09/17 03:58	121,4500P-E	UN

Project Name: WINDCHIME

Project Number: BEA99-2252

Project Name: WINDCHIME

Project Number: BEA99-2252

Report Date:	12/15/17

Lab ID: Client ID: Sample Location:	L1745363-02 MW-3R MASHPEE, MA			ollected: eceived: rep:	12/07/17 13:45 12/08/17 Not Specified
Matrix:	Water				
		Dilution	Date	Date	Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - West	oorough Lat	o								
Chloride	57.		mg/l	1.0		1	-	12/12/17 23:43	121,4500CL-E	TL
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/11/17 12:08	12/11/17 21:12	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	12/09/17 01:13	121,4500NO3-F	MR
Nitrogen, Nitrate	0.800		mg/l	0.100		1	-	12/09/17 01:13	121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	12/12/17 13:00	12/14/17 15:33	121,4500NH3-H	JO
Phosphorus, Total	ND		- mg/l	0.010		1	12/11/17 13:15	12/12/17 12:57	121,4500P-E	SD
Phosphorus, Orthophosphate	0.010		mg/l	0.005	**	1	-	12/09/17 03:59	121,4500P-E	UN
Filospilorus, Orthophilospilate	0.010									

L1745363

Lab Number:

Page 21 of 42

Serial_No:12151712:13

Field Prep:

Date

Prepared

-

-

Lab Number: L1745363 **Report Date:** 12/15/17

Date Collected Date Received

Date

Analyzed

12/11/17 12:08 12/11/17 21:13 121,4500NH3-BH

12/12/17 13:00 12/14/17 15:34 121,4500NH3-H

12/09/17 03:59

12/11/17 13:15 12/12/17 12:58

d:	12/07/17 11:45
d:	12/08/17
	Not Specified

Analytical

Method

121,4500P-E

121,4500P-E

12/12/17 23:44 121,4500CL-E

12/09/17 01:15 121,4500NO3-F

12/09/17 01:15 121,4500NO3-F

Analyst

TL

AT

MR

MR

JO

SD

UN

Lab ID:	L1745363-03
Client ID:	MW-1
Sample Location:	MASHPEE, MA
Matrix:	Water

Result Qualifier Units

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

SAMPLE RESULTS

MDL

--

--

RL

1.0

0.075

0.050

0.100

0.300

0.010

0.005

Dilution

Factor

1

1

1

1

1

1

1

Project Name: WINDCHIME

Project Number: BEA99-2252

General Chemistry - Westborough Lab

62.

ND

ND

1.13

ND

0.010

0.011

Parameter

Nitrogen, Ammonia

Nitrogen, Total Kjeldahl

Phosphorus, Orthophosphate

Nitrogen, Nitrite

Nitrogen, Nitrate

Phosphorus, Total

Chloride

Lab Number: L1745363 Report Date:

12/15/17

Lab ID:	L1745363-04	Date Collected:	12/07/17 13:05
Client ID:	MW-2	Date Received:	12/08/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

SAMPLE RESULTS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	orough Lat)								
Chloride	34.		mg/l	1.0		1	-	12/12/17 23:45	121,4500CL-E	TL
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/11/17 12:08	12/11/17 21:14	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-	12/09/17 01:16	121,4500NO3-F	MR
Nitrogen, Nitrate	14.7		mg/l	0.500		5	-	12/09/17 01:56	121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.600		2	12/12/17 13:00	12/14/17 15:37	121,4500NH3-H	JO
Phosphorus, Total	1.70		ma/l	0.050		5	12/11/17 13:15	12/12/17 13:37	121,4500P-E	SD
Phosphorus, Orthophosphate	1.68		mg/l	0.010		2		12/09/17 04:00	121,4500P-E	UN

,

Project Number: BEA99-2252

WINDCHIME

Project Name:

Lab Number: L1745363 **Report Date:** 12/15/17

Date Collected: 12/07/17 12:30 Date Received: 12/08/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat)				dan katika	MANA MANAGARA		an an Air bainn an Air	 1
Chloride	52.		mg/l	1.0	na an a	1		12/12/17 23:46	121,4500CL-E	statisti TL
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/11/17 12:08		121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050		1	-		121,4500NO3-F	MR
Nitrogen, Nitrate	0.769		mg/l	0.100		1	-		121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	12/12/17 13:00		121,4500NH3-H	JO
Phosphorus, Total	ND		mg/l	0.010		1		12/12/17 13:00	121,4500P-E	SD
Phosphorus, Orthophosphate	ND		mg/l	0.005		1	-	12/09/17 04:00	121,4500P-E	UN

Project Name: WINDCHIME

Project Number: BEA99-2252

L1745363-05

MASHPEE, MA

MW-4

Water

Lab ID:

Matrix:

Client ID:

Sample Location:

SAMPLE RESULTS

L1745363

12/15/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID:	L1745363-06	Date Collected:	12/07/17 10:00
Client ID:	PZ-1R	Date Received:	12/08/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water		

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
orough Lab)								
		mg/l	1.0		1	-	12/12/17 23:46	121,4500CL-E	TL
		mg/l	0.075		1	12/13/17 15:00	12/13/17 20:57	121,4500NH3-BH	I AT
		mg/l	0.050		1	_	12/09/17 01:22	121,4500NO3-F	MR
		mg/l	0.100		1		12/09/17 01:22	121,4500NO3-F	MR
		mg/l	0.300		1	12/12/17 13:00	12/14/17 15:41	121,4500NH3-H	JO
		ma/l	0.010		1	12/12/17 11:00	12/13/17 09:56	121,4500P-E	SD
ND		mg/l	0.005		1		12/09/17 04:01	121,4500P-E	UN
	00000000000000000000000000000000000000	Dorough Lab 13. ND ND ND 0.336 0.083	13. mg/l ND mg/l ND mg/l ND mg/l 0.336 mg/l 0.083 mg/l	Instant Constant Constant	Itestit Control Itestit Control Itestit Control Itestit Control Itestit Control Control <t< td=""><td>Result Qualifier Units RL MDL Factor Dorough Lab 13. mg/l 1.0 1 ND mg/l 0.075 1 ND mg/l 0.050 1 ND mg/l 0.100 1 0.336 mg/l 0.300 1 0.083 mg/l 0.010 1</td><td>Result Qualifier Units RL MDL Factor Prepared 13. mg/l 1.0 1 - ND mg/l 0.075 1 12/13/17 15:00 ND mg/l 0.050 1 - ND mg/l 0.100 1 - 0.336 mg/l 0.300 1 12/12/17 13:00 0.083 mg/l 0.010 1 12/12/17 11:00</td><td>Result Qualifier Units RL MDL Factor Prepared Analyzed borough Lab 13. mg/l 1.0 1 - 12/12/17 23:46 ND mg/l 0.075 1 12/13/17 15:00 12/13/17 20:57 ND mg/l 0.050 1 - 12/09/17 01:22 ND mg/l 0.100 1 - 12/09/17 01:22 0.336 mg/l 0.300 1 12/12/17 13:00 12/14/17 15:41 0.083 mg/l 0.010 1 12/12/17 11:00 12/13/17 09:56</td><td>Result Qualifier Units RL MDL Factor Prepared Analyzed Method borough Lab 13. mg/l 1.0 1 - 12/12/17 23:46 121,4500CL-E ND mg/l 0.075 1 12/13/17 15:00 12/13/17 20:57 121,4500NH3-BH ND mg/l 0.050 1 - 12/09/17 01:22 121,4500NO3-F ND mg/l 0.100 1 - 12/09/17 01:22 121,4500NO3-F 0.336 mg/l 0.300 1 12/12/17 13:00 12/14/17 15:41 121,4500NH3-H 0.083 mg/l 0.010 1 12/09/17 01:22 121,4500NH3-H</td></t<>	Result Qualifier Units RL MDL Factor Dorough Lab 13. mg/l 1.0 1 ND mg/l 0.075 1 ND mg/l 0.050 1 ND mg/l 0.100 1 0.336 mg/l 0.300 1 0.083 mg/l 0.010 1	Result Qualifier Units RL MDL Factor Prepared 13. mg/l 1.0 1 - ND mg/l 0.075 1 12/13/17 15:00 ND mg/l 0.050 1 - ND mg/l 0.100 1 - 0.336 mg/l 0.300 1 12/12/17 13:00 0.083 mg/l 0.010 1 12/12/17 11:00	Result Qualifier Units RL MDL Factor Prepared Analyzed borough Lab 13. mg/l 1.0 1 - 12/12/17 23:46 ND mg/l 0.075 1 12/13/17 15:00 12/13/17 20:57 ND mg/l 0.050 1 - 12/09/17 01:22 ND mg/l 0.100 1 - 12/09/17 01:22 0.336 mg/l 0.300 1 12/12/17 13:00 12/14/17 15:41 0.083 mg/l 0.010 1 12/12/17 11:00 12/13/17 09:56	Result Qualifier Units RL MDL Factor Prepared Analyzed Method borough Lab 13. mg/l 1.0 1 - 12/12/17 23:46 121,4500CL-E ND mg/l 0.075 1 12/13/17 15:00 12/13/17 20:57 121,4500NH3-BH ND mg/l 0.050 1 - 12/09/17 01:22 121,4500NO3-F ND mg/l 0.100 1 - 12/09/17 01:22 121,4500NO3-F 0.336 mg/l 0.300 1 12/12/17 13:00 12/14/17 15:41 121,4500NH3-H 0.083 mg/l 0.010 1 12/09/17 01:22 121,4500NH3-H

*I*_r

L1745363

12/15/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID:	L1745363-07	Date Collected:	12/07/17 10:40
Client ID:	PZ-2R	Date Received:	12/08/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water	i ioid i iop.	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat) Selection		d hadeni tara					Altona alaman	
Chloride	46.		mg/l	1.0	n da da da angelari. 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2223/22201/222200 -	12/13/17 00:33	121,4500CL-E	TL
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/13/17 15:00	12/13/17 21:00	121,4500NH3-BH	
Nitrogen, Nitrite	ND		mg/l	0.050		1	-		121,4500NO3-F	MR
Nitrogen, Nitrate	9.16		mg/l	0.500		5	-		121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	0.807		mg/l	0.600		2	12/12/17 13:00		121,4500NH3-H	JO
Phosphorus, Total	2.35		mg/l	0.025	••••	2.5		12/13/17 09:57	121,4500P-E	SD
Phosphorus, Orthophosphate	2.16		mg/l	0.025		5	• • • • • • • • • • • • • • • • • • • •	12/09/17 04:02		UN

Page 26 of 42

Serial_No:12151712:13

Lab Number: L1745363 Report Date:

12/15/17

Client ID: 2 - Client	•	Date Collected: Date Received: Field Prep:	•	12/07/17 10:35 12/08/17 Not Specified
-----------------------	---	--	---	---

SAMPLE RESULTS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	porough Lat)								
Chloride	77		mg/l	1.0		1	-	12/12/17 23:51	121,4500CL-E	TL
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/13/17 15:00	12/13/17 21:01	121,4500NH3-BH	I AT
	ND		mg/i	0.050		1	-	12/09/17 02:04	121,4500NO3-F	MR
Nitrogen, Nitrite	ND		mg/l	0.100		1	-	12/09/17 02:04	121,4500NO3-F	MR
Nitrogen, Nitrate	0.355		mg/l	0.300		1	12/12/17 13:00	12/14/17 15:43	121,4500NH3-H	JO
Nitrogen, Total Kjeldahl	2.38		mg/l	0.050		5	12/12/17 11:00	12/13/17 11:05	121,4500P-E	SD
Phosphorus, Total	2.30		mg/i	0.005		1		12/09/17 04:03	121,4500P-E	UN
Phosphorus, Orthophosphate	0.154		111911	0.000						

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab Number: L1745363 Report Date: 12/15/17

SAMPLE RESULTS

Lab ID:	L1745363-09	Date Collected:	12/07/17 10:05
Client ID:	SW-1	Date Received:	12/08/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water	riela riep.	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat						So se so se so se		Standingstanderen	
Nitrogen, Ammonia	ND		mg/l	0.075		1	12/13/17 15:00	12/13/17 21:02	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1			121,4500NO3-F	MR
Nitrogen, Nitrate	0.458		mg/l	0.100		1	_		121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	0.454		mg/l	0.300		1	12/12/17 13:00		121,4500NH3-H	JO
Phosphorus, Total	0.025		mg/l	0.010		1	· · · · · · · · · · · · · · · · · · ·	12/13/17 10:02		SD
Phosphorus, Orthophosphate	0.012		mg/l	0.005		1	•	12/09/17 04:03		UN

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab Number: L1745363 Report Date:

Date Collected:

12/15/17

12/07/17 10:50

0.066

SAMPLE RESULTS

Lab ID: Client ID: Sample Location: Matrix:	L1745363-10 SW-2 MASHPEE, MA Water						eceived:	12/07/17 10:50 12/08/17 Not Specified	
Parameter	Result Qual	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Nitrogen, Ammonia	ND	mg/l	0.075		1	12/13/17 15:00	12/13/17 21:02	2 121,4500NH3-BH	H AT
Nitrogen, Nitrite	ND	mg/l	0.050		1	-	12/09/17 01:27	2 121,4500NO3-F	MR
Nitrogen, Nitrate	0.742	mg/l	0.100		1	-	12/09/17 01:27	121,4500NO3-F	MR
•	ND	mg/l	0.300		1	12/12/17 13:00	12/14/17 15:45	5 121,4500NH3-H	JO
Nitrogen, Total Kjeldahl	0.090	mg/l	0.010		1	12/12/17 11:00	12/13/17 10:03	3 121,4500P-E	SD
Phosphorus, Total Phosphorus, Orthophosphate	0.090	mg/l	0.005		4		12/09/17 04:04	121.4500P-E	UN

mg/l

Project Name: WINDCHIME

Project Number: BEA99-2252

Phosphorus, Orthophosphate

L1745363

12/15/17

Lab Number:

Report Date:

Project Name: WINDCHIME

Project Number: BEA99-2252

SAMPLE RESULTS

Lab ID:	L1745363-11	Date Collected:	12/07/17 11:05
Client ID:	SW-3	Date Received:	12/08/17
Sample Location:	MASHPEE, MA	Field Prep:	Not Specified
Matrix:	Water	rielu riep.	Not opechied

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lat)				antina.				un Pesinen
Nitrogen, Ammonia	ND		mg/l	0.075	ann a fashrait. •••	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12/13/17 15:00	12/13/17 21:03	121,4500NH3-BH	AT
Nitrogen, Nitrite	ND		mg/l	0.050		1	-		121,4500NO3-F	MR
Nitrogen, Nitrate	0.451		mg/l	0.100		1	-		121,4500NO3-F	MR
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	12/12/17 13:00		121,4500NH3-H	JO
Phosphorus, Total	0.042		mg/l	0.010		1		12/13/17 10:05		SD
Phosphorus, Orthophosphate	0.016		mg/l	0.005		1		12/09/17 04:05	121,4500P-E	UN

Project Name: WINDCHIME Project Number: BEA99-2252

Lab Number: L1745363

Report Date:

12/15/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	thorough Lab for sam	ple(s): 01	-11 Bat	ch: WC	61070796-1				
Nitrogen, Nitrate	ND	mg/l	0.100	•••	1	-	12/08/17 23:59	121,4500NO3-F	MR
General Chemistry - Wes	tborough Lab for sam	nple(s): 01	-11 Bat	ch: WC	G1070797-1				
Nitrogen, Nitrite	ND	mg/l	0.050		1		12/09/17 00:02	121,4500NO3-F	MR
General Chemistry - Wes	tborough Lab for sam	nple(s): 01	-11 Bat	ch: W0	31070854-1				
Phosphorus, Orthophosphate	ND	mg/l	0.005		1	-	12/09/17 03:56	121,4500P-E	UN
General Chemistry - Wes	tborough Lab for san	nple(s): 01	-05 Bat	ch: W	G1071262-1				
Phosphorus, Total	ND	mg/l	0.010		1	12/11/17 13:15	12/12/17 12:31	121,4500P-E	SD
General Chemistry - Wes	thorough Lab for san	nple(s): 01	I-05 Bat	ch: W	G1071271-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	12/11/17 12:08	12/11/17 20:57	121,4500NH3-B	H AT
General Chemistry - Wes	stborough Lab for san	nple(s): 06	3-11 Bat	tch: W	G1071608-1	1			
Phosphorus, Total	ND	mg/l	0.010		1	12/12/17 11:00	12/13/17 09:34	121,4500P-E	SD
General Chemistry - Wes	sthorough Lab for sar	nple(s): 0	1-11 Ba	tch: W	G1071620-'	1			
Nitrogen, Total Kjeldahl	ND	mg/l	0.300		1	12/12/17 13:00	12/14/17 15:28	121,4500NH3-ł	I JO
General Chemistry - Wes	sthorough Lab for sar	nple(s): 0	1-08 Ba	tch: W	G1071861-	1			
Chloride	ND	mg/l	1.0		1	-	12/12/17 22:4	6 121,4500CL-E	E TL
General Chemistry - We	sthorough Lab for sar	mple(s): 0	6-11 Ba	tch: W	G1072185-	1			
Nitrogen, Ammonia	ND	mg/l	0.075		1	12/13/17 15:00	12/13/17 20:4	3 121,4500NH3-E	BH AT

Project Name: WINDCHIME Project Number: BEA99-2252	Lab Control Sample Analysis Batch Quality Control Lab Number: L174536 Report Date: 12/15/17	L1745363 12/15/17
Parameter		
General Chemistry - Westborough Lab Associated sample(s): 01-1	1 Batch: WG1070796-2	
Nitrogen, Nitrate		
General Chemistry - Westborough Lab Associated sample(s): 01-11	<pre>\ssociated sample(s): 01-11 Batch: WG1070797-2</pre>	
Nitrogen, Nitrite		
General Chemistry - Westborough Lab Associated sample(s): 01-11	ssociated sample(s): 01-11 Batch: WG1070854-2	
Phosphorus, Orthophosphate		
General Chemistry - Westborough Lab Associated sample(s): 01-05	ssociated sample(s): 01-05 Batch: WG1071262-2	
Phosphorus, Total	80-120	
General Chemistry - Westborough Lab Associated sample(s): 01-05	ssociated sample(s): 01-05 Batch: WG1071271-2	
Nitrogen, Ammonia		
General Chemistry - Westborough Lab Associated sample(s): 06-11	ssociated sample(s): 06-11 Batch: WG1071608-2	
Phosphorus, Total		
General Chemistry - Westborough Lab Associated sample(s): 01-11	ssociated sample(s): 01-11 Batch: WG1071620-2	
Nitrogen, Total Kjeldahl	- 78-122 -	
		: : :

Page 31 of 42

ALPHA

					Seri	Serial_No:12151712:13
Project Name: WINDCHIME Project Number: BEA99-2252	CHIME 1-2252	La	Lab Control Sample Analysis Batch Quality Control	alysis	Lab Number: Report Date:	L1745363 12/15/17
Parameter		LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01-08	ough Lab Associ	ated sample(s): 01-08	Batch: WG1071861-2			
Chloride		93		90-110		•
General Chemistry - Westborough Lab Associated sample(s): 06-11 Batch: WG1072185-2	rough Lab Associ	lated sample(s): 06-11	Batch: WG1072185-2			
Nitrogen, Ammonia		96		80-120	1	20
Page 32 of 42						ALPHA

Project Name: Project Number:	WINDCHIME BEA99-2252			Matrix Spike Analysis Batch Quality Control	ysis rol Lab Number: Report Date:	L1745363 12/15/17
Parameter	Native Sample	MS Added	MS Found	MS MSD %Recovery Qual Found	MSD Recovery	
General Chemistry - Westborough Lab Associated sample(s): 01-11 Nitrogen, Nitrate 0.763 4 4.52	estborough Lab Asso 0.763	ociated sampl	e(s): 01-11 4.52	QC Batch ID: WG10	.1745363-01 Clier 83-113	
General Chemistry - Westborough Lab Associated sample(s): 01-11 Nitrogen, Nitrite ND 4 3.82	estborough Lab Asso ND	ociated sampl	e(s): 01-11 ^{3.82}	QC Batch ID: WG1070797-4	QC Sample: L1745363	- LID: B-2R
General Chemistry - Westborough Lab Associated sample(s): 01-11 Phosphorus, Orthophosphate ND 0.5 0.490	estborough Lab Asso ate ND	ciated sampl	e(s): 01-11	QC Batch ID: WG1070854-4	QC Sample: L1745363-01 Clien	Client ID: B-2R
General Chemistry - Westborough Lab Associated sample(s): 01-05 Phosphorus, Total ND 0.5 0.487	estborough Lab Asso ND	ciated sample 0.5	ə(s): 01-05 ^{0.487}	QC Batch ID: WG1071262-3	QC Sample: L1745363-05 - 75-125	Client ID: MW-4
General Chemistry - Westborough Lab Associated sample(s): 01-05 Nitrogen, Ammonia 0.154 4 3.69	estborough Lab Asso 0.154	ciated sample	ə(s): 01-05 ^{3.69}	QC Batch ID: WG1071271.4 88	QC Sample: L1745363-01 Client ID: B-2R 80-120 -	
General Chemistry - Westborough Lab Associated sample(s): 06-11 Phosphorus, Total 0.50.624	sstborough Lab Asso 0.121	ciated sample 0.5	e(s): 06-11 ^{0.624}	QC Batch ID: WG1071608-3 101 -		ID: MS Sample - 20
General Chemistry - Westborough Lab Associated sample(s): 01-11 Nitrogen, Total Kjeldahl ND 8	setborough Lab Asso ND	ciated sample ⁸	€(s): 01-11 7.17	QC Batch ID: WG1071620-4 ⁹⁰ -	QC Sample: L1745363-05 Client ID: MW-4	
General Chemistry - Westborough Lab Associated sample(s): 01-08 Chloride ²⁰ 30	stborough Lab Assoc 10	ciated sample ²⁰	:(s): 01-08 ³⁰	QC Batch ID: WG1071861-4 100 -	QC Sample: L1745253-02 Client - 58-140	Client ID: MS Sample 0 - 7
General Chemistry - Westborough Lab Associated sample(s): 06-11 Nitrogen, Ammonia ND 4 3.72	stborough Lab Assoc ND	ciated sample 4	(s): 06-11 3.72	QC Batch ID: WG1072185-4 93 -	QC Sample: L1745363-06 Client 	Client ID: PZ-1R
						•

Page 33 of 42

Project Name: WINDCHIME Project Number: BEA99-2252	Lab Dupl Batch (Lab Duplicate Analysis Batch Quality Control	<u>s</u>	Lab Nu Report	Lab Number: Report Date:	L1745363 12/15/17
Darameter Native S	Native Sample Dupli	Duplicate Sample	Units	RPD QI	Qual RPI	RPD Limits
lemistry - Westborough Lab Associated sample	-11 QC Batch ID: WG1070796-3		Sample: L17	QC Sample: L1745363-01 Client ID:	ant ID: B-2R	
	0.763	0.786	l/gm	3	anna o i manna a na agus a	17
try - Westborough Lab Associated sample(s):	01-11 QC Batch ID: WG1070797-3		Sample: L17	QC Sample: L1745363-01 Client ID:	ent ID: B-2R	
	QN	QN	l/gm	NC		20
stry - Westborough Lab Associated sample(s):	01-11 QC Batch ID: WG1070854-3		Sample: L17	QC Sample: L1745363-08 Client ID: PZ-3R	ent ID: PZ-3	R
	0.154	0.156	l/gm			20
orough Lab Associated sample(s):	01-05 QC Batch ID: WG1071262-4		Sample: L17	QC Sample: L1745363-05 Client ID: MW-4	ent ID: MW [.]	4
	DN	Ŋ	mg/l	NC		.20
y - Westborough Lab Associated sample(s):	01-05 QC Batch ID: WG1071271-3		Sample: L1	QC Sample: L1745363-01 Client ID: B-2R	ent ID: B-2F	X
	0.154	0.120	mg/l	25	a	20
Westborough Lab Associated sample(s):	06-11 QC Batch ID: WG1071608-4		Sample: L1	QC Sample: L1744276-01 Client ID: DUP Sample	ent ID: DUF	Sample
	0.121	0.126	l/gm	4		20
General Chemistry - Westborough Lab Associated sample(s): 01	01-11 QC Batch ID: WG1071620-3		Sample: L1	QC Sample: L1745363-05 Client ID: MW-4	ient ID: MW	4
	QN	ŊŊ	l/gm	NC		24
Vestborough Lab Associated sample(s):	01-08 QC Batch ID: WG1071861-3		Sample: L1	QC Sample: L1745253-02 Client ID: DUP Sample	ient ID: DUI	o Sample
	10	10	mg/l	0		.
chemistry - Westborough Lab Associated sample(s):	06-11 QC Batch ID: WG1072185-3		Sample: L1	QC Sample: L1745363-06 Client ID: PZ-1R	ient ID: PZ-	1R
		ON	mg/l	NC		20
Darre 34 of 42						ALPHA

Page 34 of 42

WINDCHIME	BEA99-2252
Project Name:	Project Number:

Lab Number: L1745363 Serial_No:12151712:13 Report Date: 12/15/17

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

2
0
-
ŝ
~
~
5
~
ę,
-
~
-
~
đ
0
0
1
0

Custody Seal	Absent
Cooler	с

Container Information

Analysis(*)

Frozen Date/Time

Container Information	formation		Initial	Final	Toma		
Container ID	Container Type	Cooler	рН	Ηd	deg C	Pres	Seal
L1745363-01A	Plastic 250ml unpreserved	U	7	7	2.5	≻	Absent
L1745363-01B	Plastic 250ml HNO3 preserved	с	ų	Ŷ	2.5	≻	Ahsent
L1745363-01C	Plastic 500ml H2SO4 preserved	U	Ŷ	8	2.5	· >	Ahsent
L1745363-02A	Plastic 250ml unpreserved	U	7	7	2.5	· >-	Absent
L1745363-02B	Plastic 250ml HNO3 preserved	U	ų	Ŷ	2.5	~	Absent
L1745363-02C	Plastic 500ml H2SO4 preserved	с	ų	сч V	2.5	· >-	Absent
L1745363-03A	Plastic 250ml unpreserved	U	7	7	2.5	≻	Absent
L1745363-03B	Plastic 250mi HNO3 preserved	с	Ŷ	Ŷ	2.5	۲	Ahsent
L1745363-03C	Plastic 500ml H2SO4 preserved	с	Š	Q	2.5	• >	Absent
L1745363-04A	Plastic 250ml unpreserved	U	7	7	2.5	· >	Absent
L1745363-04B	Plastic 250ml HNO3 preserved	υ	Ŷ	6	2.5	≻	Absent
L1745363-04C	Plastic 500ml H2SO4 preserved	с	ų	ç,	2.5	~	Absent
L1745363-05A	Plastic 250ml unpreserved	U	7	7	2.5	· >-	Absent
L1745363-05B	Plastic 250ml HNO3 preserved	с	ų	Ŷ	2.5	≻	Absent
L1745363-05C	Plastic 500ml H2SO4 preserved	ပ	8	₽	2.5	~ ~	Absent
L1745363-06A	Plastic 250ml unpreserved	U	7	7	2.5	~	Absent
L1745363-06B	Plastic 250ml HNO3 preserved	с	ų	ų	2.5	≻	Absent
L1745363-06C	Plastic 500ml H2SO4 preserved	с	ų	ଟ	2.5	≻	Absent
L1745363-07A	Plastic 250ml unpreserved	с	7	7	2.5	~	Absent
L1745363-07B	Plastic 250ml HNO3 preserved	с	Q	8	2.5	≻	Absent

*Values in parentheses indicate holding time in days

≻ ≻

2.5

ų

ų

ပ

Plastic 500ml H2SO4 preserved

L1745363-07C

Absent	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)
Absent	NA-TI(180)
Absent	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
Absent	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)
Absent	NA-TI(180)
Absent	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
Absent	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)
Absent	NA-TI(180)
Absent	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
Absent	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)
Absent	NA-TI(180)
Absent	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
Absent	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)
Absent	NA-TI(180)
Absent	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
Absent	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)
Absent	NA-TI(180)
Absent	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
Absent	OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)
Absent	NA-TI(180)
Absent	TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
or time is done	

Page 35 of 42

Project Numb	Project Number: BEA99-2252								Keport Date: 12/15/17
Container Information Container ID Contai	Container Information Container ID Container Type	Cooler	Initial pH	Final pH	Temp deg C Pres	Pres	Seal	Frozen Date/Time	Analysis(*)
L1745363-08A	Plastic 250ml unpreserved	ы	7	7	2.5	≻	Absent		OPHOS-4500(2),CL-4500(28),NO3- 4500(2),NO2-4500NO3(2)
1 1775363_08B	Plastic 250ml HNO3 preserved	с	₽	V	2.5	≻	Absent		NA-TI(180)
L1745363_08C	plastic 500ml H2SO4 preserved	с	ц	₽	2.5	≻	Absent		TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
L1745363-09A	Plastic 250ml unpreserved	υ	7	7	2.5	≻	Absent		OPHOS-4500(2),NO3-4500(2),NO2- 4500NO3(2)
11775363-000	Diastic 500ml H2SO4 preserved	U	ų	\$ ²	2.5	≻	Absent		TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
L1745363-10A	Plastic 250ml unpreserved	U	7	7	2.5	≻	Absent		OPHOS-4500(2),NO3-4500(2),NO2- 4500NO3(2)
1 1715363 100	Plastic 500ml H2SO4 preserved	o	ų	8	2.5	≻	Absent		TKN-4500(28),TPHOS-4500(28),NH3-4500(28)
L1745363-11A	Plastic 250ml unpreserved	U	7	7	2.5	≻	Absent		OPHOS-4500(2),NO3-4500(2),NO2- 4500NO3(2)
L1745363-11C	Plastic 500ml H2SO4 preserved	U	4	Ŷ	2.5	≻	Absent		TKN-4500(28),TPHOS-4500(28),NH3-4500(28)

Serial_No:12151712:13 Lab Number: L1745363 Report Date: 12/15/17

Project Name: WINDCHIME

Page 36 of 42

*Values in parentheses indicate holding time in days

Project Name: WINDCHIME

Project Number: BEA99-2252

Lab Number: L1745363 Report Date: 12/15/17

GLOSSARY

-	GEOGOAN
Acronyms	
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	 Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

L1745363

12/15/17

Lab Number:

Report Date:

Project Name: WINDCHIME Project Number: BEA99-2252

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:WINDCHIMEProject Number:BEA99-2252

Lab Number: L1745363 Report Date: 12/15/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: NPW and SCM: Perchlorate EPA 9010: NPW and SCM: Amenable Cyanide Distillation EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

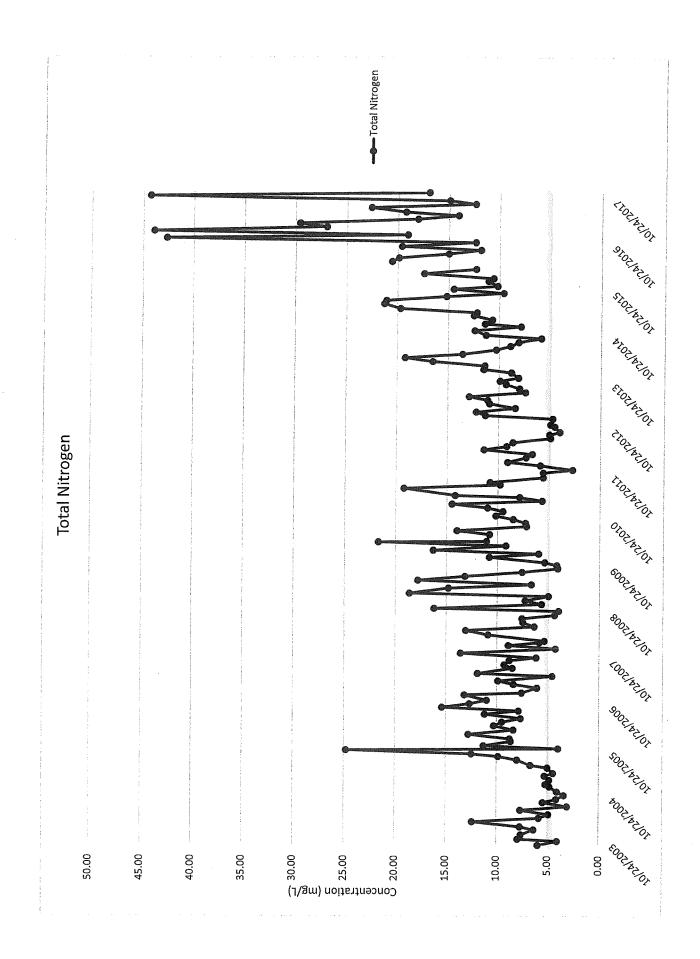
Westborough Facility:

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, Drinking Water SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.


Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ų.

CHAIN OF CUSTODY		Date Recidin Lab 12 03		HA Job #: 1	ALPHA JOB # 11745363
ДГРНА	Project Information	Information	-	Billing Information	
				Same as Client into	PO #: 2252
Westborough, MA Mansfield, MA TEL: 508-928-9220 TEL: 508-822-8300	Project Name: Windchime		Add't Deilverabies		
FAX: 508-898-9153 FAX: 508-622-3288		Reculatory Recuirements/Report Limits	eoort Limits		
Client Information	Project Location: Mashpee, MA	State/Fed Program	Criteria	ź	
Client: Bennett Environmental Associates	Project #: BEA99-2252				
Address: 1573 Main Street / P.O. Box 1743	Project Manager. David C. Bennett				
Brewster, MA 02631	ALPHA Quote #.				
Phone: 508-896-1706	Turn-Around Time	ANAI VSIS			r- C
Fax: 508-896-5109	Standard Cush (DNLY IF PRE-APPROVED)			******	SAMPLE HANDLING
Email: sfarrenkopf@bennett-ea.com					
🔲 Thase samples have been Proviously analyzed by Alpha	Due Date: Time:				S Not Needed 0
Other Project Specific Requirements/Comments/Detection Limits	s/Detection Limits:				
		S(
		e, OPho			pelowi belowi
ALPHA Lab ID Sample ID	Collection Sample Sampler's				
	Date Time Matrix Initials	Nirate, TKN, N			- Sample Specific Comments
H5262-69 SW-1	12/7/17 10:05 SW (CF14				Ň
	0:50				Ë4
	1711:05				C¥
					•
					Ŧ
	Container Type	1 1 1 0 0 0	4 F 	• •	
	Preservative	і і п	F F	4 F	Please print clearly, legally and completely. Samples can
	Relinquished By:	Date/Time Rec	Received By:	Date/Time	not be logged in and tumaround tithe clock will not
	Church and and a	12/7/17 BEA Fr	idoc	12/7/17	slart urtil any antbrittings are recolved. All samples to Amittari are to taset 10
ECosta app as an invite	Xa Night Marine - Not	11	7420	12/5/11 152	Alpha's Payment Teams
UPPE, generican second s	MININE ARC	12/8 3010 - 4~		16/8/17 20:10	

Page 42 of 42

APPENDIX E

BENNETT ENVIRONMENTAL ASSOCIATES, INC.

LICENSED SITE PROFESSIONALS & ENVIRONMENTAL SCIENTISTS & GEOLOGISTS & ENGINEERS

1573 Main Street - P.O. Box 1743, Brewster, MA 02631 🖞 508-896-1706 🎍 Fax 508-896-5109 🖞 www.bennett-ea.com

QUALITY ASSURANCE & QUALITY CONTROL PROGRAM

Quality Assurance & Quality Control Program For Soil and Groundwater Sampling

INTRODUCTION

The Quality Assurance & Quality Control (QA/QC) Program outlines the purpose, policies, organization and operations to support sampling work conducted by BENNETT ENVIRONMENTAL ASSOCIATES, INC. The procedures and protocols represented herein are consistent with the MA DEP "Standard References for Monitor Wells" [WSC-310-91], the EPA's low-flow SOP [EQASOP-GW001], and the recommendations of a MA certified laboratory. Implementation of this program will help to ensure the validity of data used to provide professional engineering and environmental opinions to clients.

The following definitions are used in the QA/QC Program:

Quality Assurance refers to the concepts used in defining a system for verifying and maintaining a desired level of quality in a product or process.

Quality Control is a specific, step-by-step description of how the Quality Assurance Program will be carried out.

This QA/QC Program guides field sampling activities. Project specific QA/QC Programs are adopted when warranted. Modifications to the QA/QC Program may be made only after specific approval by the QA/QC Officer (Project Manager).

The specific objectives of the QA/QC Program are to:

- 1. Specify the level of quality of each field procedure used in collecting samples;
- 2. Identify deficiencies in field procedures which might affect the quality of data; and
- 3. Require sufficient documentation to verify the credibility of the sampling methods employed.

EMERGENCY SPILL RESPONSE () WASTE SITE CLEANUP () SITE ASSESSMENT () ENVIRONMENTAL PERMITTING () LAND USE PLANNING WATER SUPPLY DEVELOPMENT, OPERATION & MAINTENANCE () WASTEWATER TREATMENT, OPERATION & MAINTENANCE

PROGRAM ORGANIZATION AND RESPONSIBILITY

The Project Manager of BENNETT ENVIRONMENTAL ASSOCIATES, INC. is responsible for the quality of work produced. The Project Manager directs the QA/QC Program to document the control of field efforts and resulting data. In this capacity, the Project Manager is expected to do the following:

- 1. Prepare detailed QC plans;
- 2. Obtain analytical and sampling procedures reference materials;
- 3. Ensure that all field test and measurement equipment is maintained and calibrated properly;
- 4. Monitor quality assurance activities to ensure conformance with authorized policies and procedures, sound practices and to recommend improvements as necessary;
- 5. Ensure that all field sampling is conducted in accordance with guidelines contained herein;
- 6. Oversee all field sampling efforts to detect conditions which might directly or indirectly jeopardize the utility of resulting analytical data, such as improper calibration of equipment or cross-contamination through improper storage of samples;
- 7. Ensure that sample handling procedures are adequate for the sample types received; and
- 8. Inspect the quality of purchased sampling materials.

SAMPLE MANAGEMENT, COLLECTION, AND PREPARATION

Introduction

Sample management and stringent documentation are essential for successful quality assurance. The procedures in this section are designed to ensure collection of samples which truly represent the matrix being sampled by eliminating trace levels of contaminants from external sources.

Sample Management

The management of samples, up to the point of delivery to the laboratory either by courier or in person, is under the supervision of the Project Manager, who will ensure that samples are collected, labeled, preserved, stored, and transported according to the prescribed methods. If significant deviations from the sampling protocol occur, resulting in a suspected compromise of the sample integrity, all samples collected during the sampling effort prior to correction of the procedure will be discarded and fresh samples collected.

Sample Collection

Groundwater

Groundwater samples will not be collected immediately following well development. Sufficient time will be allowed for groundwater to stabilize and approach chemical equilibrium with the well construction materials. Monitoring wells will be sampled in accordance with the following sampling procedures:

- 1. Identify the well and record the well number on the Monitoring Well Sampling Log (attached).
- 2. Open the well cap and measure total organic volatile (TOV) concentrations at the wellhead with the use of a portable photoionization detector. Record levels detected.
- 3. Measure groundwater level to the nearest 0.01 feet from the top of the well casing using a water level indicator. The water level measurement will be taken from a permanent reference point on the well casing. The indicator will be lowered into the well casing with care to provide for the least degree of disturbance to the water surface. The measurement of well depth will only be collected after sampling is completed to avoid the suspension of settled solids from the formation. Record water level on a Monitoring Well Sampling Log (attached). Water level indicators will be decontaminated between wells.
- 4. The volume of standing water in the well casing will be calculated and recorded on the Monitoring Well Sampling Log.
- 5. Purging and sampling should proceed in progression from least to most contaminated well, if known. A low-flow pump with a flow-through cell is preferred. The pump or tubing should be placed at the appropriate screened interval for the contaminant of concern being sampled. The pump is started at its lowest speed setting and slowly increased until discharge occurs. The water level indicator should be used to monitor drawdown within the well and the pump speed adjusted until there is little or no drawdown (<0.3'). Water level and pumping rates will be monitored every three to five minutes.
- 6. During well purging (at least three (3) well volumes), monitor indicator parameters: temperature, pH, conductivity and dissolved oxygen. These parameters are considered to be stabilized when three consecutive readings taken three to five minutes apart are within +/-0.1 for pH, +/- 3% for conductivity, and +/- 10% for dissolved oxygen. Upon stabilization, the concentration will be recorded on the Monitoring Well Sampling Log. Other sampling methods may be used with compound specific parameters used to determine stabilization.
- 7. Samples will be placed into laboratory sterilized and/or preserved, pre-labeled containers, taking care to minimize agitation of the sample [Refer to attached "Recommended Sample Containers..." Groundwater Analytical]. Volatile organic compound (VOC) samples will be collected first.
- 8. Samples will be logged in on an appropriate chain-of-custody form.
- 9. All groundwater samples will be stored in a cooler or refrigerator at approximately 4° C.

The following blanks may be collected as required:

Field blank: One field blank should be collected from each water source used for sampling equipment decontamination or for assisting well development procedures.

Equipment blank: One equipment blank should be collected prior to the commencement of field work from each set of sampling equipment used that day.

Trip blank: A trip blank is required to accompany each volatile sample shipment. These blanks are prepared by filling a 40-mL VOA vial with distilled/deionized water.

When sampling water for volatile compounds, care must be exercised to prevent loss of compound through evaporation and to control susceptibility to outside contamination. Precautionary measures include:

- 1. Avoiding engine exhaust, gasoline containers, degreasing solvents, solvent-laden rags and noncompatible decontamination agents;
- 2. Sampling bottles will only be opened at the time of sampling and quickly closed after collecting the sample, preventing aeration of the sample with the atmosphere or any other gas;
- 3. Slowly filling bottles to capacity with sample and securing cap without entraining air bubbles;
- 4. Inverting the bottle while tapping lightly to check for air bubbles;
- 5. Adding additional sample to eliminate air bubbles, if present. Repeating Steps 3 and 4;
- Placing samples on ice (approximately 4° C) immediately after collection in a dark, dry location;
- 7. Segregating samples with a secondary barrier such as zip-lock bags, etc.; and
- 8. Analyzing samples as soon as possible within the specific holding times after collection.

Dedicated equipment is preferred. Where impractical or cost-prohibitive, pump tubing will be decontaminated as follows:

- 1. Pump non-phosphate detergent solution through system for two minutes.
- 2. Pump clean hot tap water through system for two minutes or until clear, whichever is longer.
- 3. Pump analyte-free water through system for two minutes.
- 4. Seal tubing ends; wrap and label with date of cleaning.

<u>Soils</u>

The procedures to be used when collecting and screening soil samples are outlined below:

- 1. Prior to sampling surficial soils, surface vegetation, rocks, leaves, and debris will be cleared from the sample point to allow collection of a clean soil sample. If surficial soil samples are to be collected, a hand trowel or shovel will be used. The sampling equipment will be decontaminated as outlined below.
- 2. Boring samples will be collected via drilling rig-operated split spoon procedures, direct-push shelby tubes, or from a hand held bucket auger. Soil samples collected from excavations or test pits will be collected directly with a decontaminated sampling device.
- 3. Soil samples collected for TOV screening will be placed in glass soil jars with aluminum foil placed under the screw cap. Samples will be allowed to warm to ambient temperature before screening or will be screened in a heated vehicle after warming. The jar will be shaken for fifteen seconds prior to warming and after warming to ensure proper headspace development. Total organic vapors will be measured via a portable photoionization detector (PID) and their concentration recorded either on a Geological Borehole Log or Field Response Log.
- 4. Soil samples will be collected into pre-labeled, laboratory sterilized and/or preserved jars and preserved in a cooler or refrigerator at approximately 4° C.
- 5. Sample containers will be marked to indicate sampling date, time, location, and depth. Samples will be logged in on appropriate chain-of-custody forms.
- 6. The stratigraphy of each soil boring and test pit excavation, and the construction of each monitoring well will be recorded by the on-site geologist on the appropriate Geologic Borehole Log (copy attached).

When sampling soils for volatile compounds, care must be exercised to prevent loss of compound and to control susceptibility to outside contamination. Precautionary measures include:

- 1. Avoiding engine exhaust, gasoline containers, degreasing solvents, solvent-laden rags and non-compatible decontamination agents;
- 2. Opening sampling bottles only at the time of sampling and quickly closing after collecting the sample;
- 3. Placing samples in appropriately preserved containers on ice (approximately 4° C) immediately after collection in a dark, dry location;
- 4. Segregating samples with a secondary barrier such as zip-lock bags, etc.; and
- 5. Analyzing sample as soon as possible within the specific holding times after collection.

Soil sampling equipment (shovel, auger, etc.) will be decontaminated between each sampling location with a potable water rinse, alconox soap wash, and a final potable water rinse.

Drilling and excavating apparatus (augers, rods, casing, core barrels, backhoe bucket, and other equipment coming in contact with the borehole or excavation) will be decontaminated between each boring and excavation. If necessary, an alconox soap wash followed by a steam cleaning will be included.

Sample Preservation

To prevent or retard the degradation/modification of chemicals in samples during transit and storage, the samples will be refrigerated at or below 4° C in appropriately preserved containers. Samples will be delivered to the laboratory by courier or by overnight delivery service.

DATA MANAGEMENT

Logging of Samples

The accountability of a sample begins when the sample is taken from its natural environment. Sample handling (chain-of-custody) records must be completed at the time of sampling. The following chain-of-custody procedure must be implemented by the Field Team Leader to assure sample integrity.

1. The samples are under custody of the Field Team Leader if:

a. they are in his (or her) possession;

b. they are in view after being in possession;

c. they are locked up or sealed securely to prevent tampering; or,

d. they are in a designated secure area.

- 2. The "original" of the sample handling form must accompany the samples at all times after collection. A copy of the sample handling form is kept by the Field Team Leader.
- 3. When possession of the samples is transferred, the individuals relinquishing and receiving will sign, date, and note the time on the chain-of-custody.

The chain-of-custody will contain information to distinguish each sample from any other sample. This information will include:

- 1. The project for which sampling is being conducted;
- 2. The matrix being samples (air, groundwater, soil, etc.);
- 3. The sampling date and time;

- 4. Field sample identification number and chain-of-custody identification number;
- 5. The number and type of containers and the type of preservative used (if any); and,
- 6. Signature of the person performing the sampling.

Each sample will be assigned a unique identification number or description, which will be marked on the sample container. The chain-of-custody will be forwarded to the laboratory with the samples. As a precaution against this record being lost or altered, the sampling personnel will retain a copy documenting all information up until the first change of sample custody. This record will be filed in the project folder as maintained by the Project Manager.

DISCLAIMER: The Quality Assurance and Quality Control Program outlined herein is intended as a field guidance document only and is not intended to represent techniques and requirements for all sampling procedures. While BENNETT ENVIRONMENTAL ASSOCIATES, INC. makes every effort to keep our QA/QC Program updated, this document should not be relied upon as a guarantee or warranty representing the most recent policies and techniques used. The United States Environmental Protection Agency and the Massachusetts Department of Environmental Protection should be consulted for sampling procedures relative to specific compounds, with specific reference to Policy #WSC-07-350 and Policy #WSC-10-320. All analytical data was generated pursuant to the MA DEP Compendium of Analytical Methods (CAM).

FORM SAMPLES

т Х

•

.

٠

,

.

.

NOTES:								Well Number	Sampler:	Location: -	Job Name:		1573 Main Street, P.O. Box 1743 Brewster, MA 02631
NA = Not								Elev. of reference point (feet)					treet, P.O. J A 02631
NA = Not Applicable; NE = Not Established; NT = Not Taken								Total Depth of Well (feet)					Box 1743
;; NE = No								Depth to Water (feet)					
t Establishe			-					Standing Water Height (feet)					BEN
d; NT = N								Water Table Elevation (feet)				M	BENNETT ENVIRONMENTAL ASSOCIATES, INCLICENSED SITE PROFESSIONALS, ENVIRONMENTAL SCIENTISTS, GEOLOGISTS, ENGINEERS
ot Taken								Static Volume (gallons)				MONITORING WELL SAMPLING	ENVI
								Volume Purged (gallons)	Measuring Point:	Job Number:	.Date(s):	RING V	RONM ALS, ENVIR
								HNU PI-101 (ppm)	Point:	er:		VELL S	IENT A ONMENTAL
								рН	Ground St			SAMPL	L ASS
								Dissolved Oxygen (mg/L)	Ground Surface or T.O.C			ING L	SOCIA
								Conductivity	0.C		Time:	LOG	IATES, Logists, Engi
								Temperature (F)					INC.
								Comments:			Tide:		Phone: (508) 896-1706 Fax: (508) 896-5109
													-1706 -5109

1573 Main Street, P.O. Box 1743 Brewster, MA 02631

508-896-1706 fax 508-896-5109

MONITORING WELLS SAMPLING LOG **RESPIRATION ANALYSIS**

Date(s)_____ Job Name_____

Location_____ Job Number_____

Sampler

Well Number	Total Depth of Well (feet)	Approx. Depth to Water (feet)	Standing Water Height (feet)	Length of screen above SWL	HNU PI-101 (ppm)	Methane (%CH4)	Oxygen (% O2)	Carbon Dioxide (%CO ₂₎	Comments:
Notes:	L	L	1	L	.		-	.	

	:	T	1	1	T	T	Т	Т	<u> </u>	-T	Т	Т	1	T	T	T	S		Ţ	T	
NOTES:															Well Number	1	Sampler:	Location:	Job Name:		1573 Main S Brewster, M
NA = No															Total Depth of Well (feet)						1573 Main Street, P.O. Box 1743 Brewster, MA 02631
t Applicabi															Depth to Water (feet)						Box 1743
le; NE = N															Production Horizon						
NA = Not Applicable; NE = Not Established; NT = Not Taken															Volume Purged (gallons)						BENN
ied; NT = Ì															pH						D SITE PRO
vot Taken															Dissolved Oxygen (mg/L)	3	Measuring Point:	Job Number:	Date(s):	PRIV	ENVIR
													-		Conductivity		Point:	er:		PRIVATE WELL SAMPLING LOG	BENNETT ENVIRONMENTAL ASSOCIATES, INCLICENSED SITE PROFESSIONALS, ENVIRONMENTAL SCIENTISTS, GEOLOGISTS, ENGINEERS
															Temperature (F)		Ground S			LL SAN	NTAL MENTAL SCI
															Te		Ground Surface or T.O.C			IPLIN	ASSO ENTISTS, C
															Comments:		r.o.c		Time:	G LOG	CLAT BEOLOGIST
															nts:					~~	ES, s, enc
																					INC.
																			Tide:		
																		ļ	le:		Phone Fax
																					Phone: (508) 896-1706 Fax: (508) 896-5109
																					-1706 -5109
														1							

1573 Main Street, P.O. Box 1743 Brewster, MA 02631

Phone: (508) 896-1706 Fax: (508) 896-5109

INSPECTORS DAILY RECORD OF WORK PROGRESS

Date:	REPORT NUMBER:
Job Name:	Job Number:
Feature:	
Contractor: BEA	
Type of Work:	
Weather Conditions:	Temperature:
Contractor's Work Force (Indicate classification, including subcontract	etor personnel):
Bennett Environmental Associates:	
Equipment in use or idled (Identify which):	
Materials or equipment delivered, quantity or pay items placed:	
Non-conforming materials or work, field problems, inspections of pre	viously reported deficiencies:
Summary of construction activities:	

1573 N Brewst	CIATES, IN Main St., P.O. ter, MA. 0263	. Box 1743 31			oject :					······		Boring No Location Surface E		
Gr	oundwater R							Cas	ing	Sampler	Core	Start Date	·	
	Date	Reading	_	Туре								Finish Da	te	
1			_	Size								Driller		
2			4		imer V		·		<u> </u>		<u></u>	Inspector		
3					ımer I	Fall					1 <u></u>			
	Sample	Sampling		ches					TOV				Well	Interp
Depth	type-No.	Depth (ft)	Pen	Rec	Bl	ow C	Count	6"	Reading		Soil Description		Specs	Geol
				ļ		1				_				
				 						4				
			-	──	–		+			-				
5-ft						+	+-	+		-				
			1	+	╈	┼─	+	+		1			1	
				\square		1	1	+		-				
]				
10.0	ļļ		ļ	ļ		1	ļ	ļ		1			1	
10-ft	┨─────┤		-		 	 		<u> </u>	_	4				
					<u> </u>		+	+	<u> </u>	1			1	
					İ			+	1	1				
			1		\vdash	<u> </u>	+	1	1	1				
15-ft										1				
]				
									<u> </u>					
					I	<u> </u>								
20-ft				ļ		 			l	1				
40-1L	<u> </u> }		╂──┤		<u> </u>		+	+	<u> </u>	1				
	-			├ ──┧	<u> </u>	<u> </u>	+	+		ł				
					 	1	+	1		1			[
										1				
25-ft										l				
							<u> </u>	ļ		l				
	-			L			<u> </u>			l				
							──			1				
30-ft							<u> </u>							
						<u>† </u>				1				
										1				
										Į				
	.					ļ	ļ			Į				
35-ft			┟──┤			ļ				ļ				
						 				Į				
			<u>├</u>				<u> </u>			1				
										1				
10-ft										1				
						1								
							L							
15-ft				-+			ı		ļ	1				
-J-11			├ ─-				\vdash	·						
	Sand	Cohesiv	re Soils	<u>s</u>	<u> </u>	franu	ar So	ils	Sample	Type		SWL: (1l +/-)	
000000000000	Gravel	< 2 = ver					ery lo		SS - split			NOTES:		
	Silt	2-4 = sof				0 = 10			ST - shel		-		-	
	Top/Sub Soi			tiff	11-30			n	AF - aug					
	Clay	8-15 = stif			30-50				RC - rock					
	Peat	15-30 = ver					ery de	ense	MA - mie					
	Fill	> 30 = har							HA - han		1			

1573 Main Street, P.O. Box 1743

508-896-1706 fax 508-896-5109

BOREHOLE PERMEABILITY TEST Variable - Head Test										
Boring No	Well Point		Standpipe	Test 1	No					
	Falling Head		Rising Head	Туре	of Test:					
Project:		Site/	Location:							
Inspector:	Date:	-	Checked By:		Date:					
Time:	Ground Ele	vation:	R	eference Elevatio	n:					
Casing ID.:	Ca	asing O.D.:								
Depth of Boring (A)):	I	Depth to Top of Te	st Section (B):						
Depth of Groundwa	ter Table (H):		Length of T	est Section (L):						
Type of Material in	Test Zone (USC or OTHE	ER):								
Comments:										
h = H-X (falling head)	Ho = H-Xo (falling head)									
or h = X-H (rising head)	or xo-H (rising head)									
2r	Xo = X at t=0	TIME	ELAPSED TIME (t)	h/Ho	WATER DEPTH (x)	ACTIVE HEAD(h)				
	Ā E									
♥ ►Ζ	(H) П									
	V STATIC									
A A										
<u> </u>										
	K==									
A, B, H&L are defined a	bove									

1573 Main Street, P.O. Box 1743 Brewster, MA 02631

(508) 896-1706 fax (508) 896-5109

SIEVE ANALYSIS DATA AND COMPUTATION SHEET

Date:	Sheet of
Job Name:	Job Number:
Sample Number:	
Sample Collected By:	Sample Tested By:
Notes:	

SIEVE OPENING IN MILLIMETERS	SIEVE MESH	WEIGHT RETAINED IN GRAMS (Cumulative)	PERCENT RETAINED (Cumulative)	CUMULATIVE PERCENT FINER	PROJECT MANUAL SPECIFICATION (USCS)
2.36 2.0 1.0 .5 .25 .125 .075 PAN	8 10 18 35 60 100 200 PAN				Fine gravel V. Fine Gravel V. Coarse Sand Coarse Sand Medium Sand Fine Sand V. Fine Sand Silty/Clay
PASSED MES TOTA					

Sample Weight Wet:

Sample Weight Dry:

Percent Moisture:

Sample Weight Passed Through Sieves:

									0	82
									0	730
									0	64
									0	55
									0	46
									0	37
									0	28
									0	19
									0	10
-									0	6
									0	
										<u> </u>
									0	4
									0	ω
									0	N
									0	
									9	
									8	
									7	
									0	
									4	
									. 3	
									<u> </u>	
									<u></u>	
										(sec.) 4
									0	3
									5	↓
									9	
									3	
									7	
									0	
									01	5
									+4	
									3	
									2	
									<u></u>	
							- 1		0	
Draw Down pH/Cond./Temp.	Static Water Lv.	Depth to Water	Draw Down	Static Water Lv.	Depth to Water	Draw Down	Static Water Lv.	Depth to Water	Time	Time
TOC: NOTES:		Location:	TOC:		Location:	TOC:		Location:		
									v Rate:	Pump & Flov
				Start Date:						Witness:
						Weather:				Location:
		Date.				JOD NUMBER.				Job Name:

TECHNICAL REFERENCE

· ·

1

4

,

•

.

•

•

,

· · ·

•

.

.

Project Information Project Name: Project Location: Project #: Project Manager: Project Manager: ALPHA Quote #: Turn-Around Time Date Due: Time: Date Due: Sample Collection Sample S vhich samples and what tests MS to be performed. Severy 20 soil samples) Matrix Initials Matrix Collection Matrix Date Time Collection Matrix Date Collection Matrix Initials Collection Matrix Date Container Type Preservative Preservative Relinquished By: Date/Time					$\left - \right $															Jan-2010)	FORM NO: 01-01 (rev. 18-Jan-2010)
Project Information Report Information - Data Deliverables Billing in Container Type Project Inane: I FAX: Project Inane: I FAX: Cane as Regulatory Required on this Soc Yes I No. Act Deliverables I Sam as Regulatory Required on this Soc Yes I No. Act Deliverables Project Inane: I Yes I No. No. PRESUMP TVE CERTAINTY CT REASON I Yes I No. Are MCP Analytical Methods Required on this Soc Yes I No. Are CT RCP (Reasonable Confidence Prof Yes I No. Are CT RCP	side.	Alpha's Term See reverse																			
Project Information Report Information Data Deliverables Elling Information Project Xume $\Box FAX$ $\Box GAAL$ $\Box ance s Clear Info O S Project Xume \Box ACE \Box ACE \Box ACE \Box ACE \Box ance s Clear Info O S Project Xume \Box ACE \Box ACE \Box ACE \Box ACE \Box ACE \Box ance s Clear Info O S Project Xume \Box ACEE \Box ACEE \Box ACEE <$	y ambiguities are resolved.	All samples s	Time	Date/	<u> </u>			1 By:	ceived	Rec			te/Time	Da		зу:	quished E	Relin			
Project Information Report Information - Data Deliverables Elling Information Project Name: I FAX IIII Deliverables IIII Deliverables IIII Deliverables Project Name: I FAX IIII Deliverables IIII Deliverables IIII Deliverables Project Namage: Regulatory Requirements/Report Limits State Fed Program Citeria ALPHA Quote # IIII Deliverables IIII Deliverables State Fed Program Citeria Landad IIII Deliverables IIII Deliverables IIII Deliverables Sample Regulatory Requirements/Report Limits Sample Regulatory Requirements/Report Deliverables Date De: Time: IIIII Deliverables IIIII Deliverables Sample Regulatory Requirements/Report Limits Instrustry Interviewed white test NS to be performed. Sample Sample's and white test NS to be performed. Sample Sample's Sample's and white test NS to be performed. Sample Sample's and white test NS to be performed. Sample Sample's Sample's and white test NS to be performed. Sample Sample's and white test NS to be performed. Sample Sample's Samp	ound time clock will not	in and turnar										ve	reservati	P					1		
	clearly, legibly and com-	Please print of										Эe	ainer Typ	Cont					NS ABOVE!	ER QUESTIO	PLEASE ANSWER QUESTIONS ABOVE
Project Information Report Information - Data Deliverables Billing Information Project Name:																					
Project Information Report Information Billing Information Project Name: Project Name: Project Namage: Project Manage: Project Manage: Project Manage: Image: Project Manage: Image: Project Manage: Image: Project Manage: Image: Project Manage: Project Manage: Image: <liimage:< li=""> </liimage:<>																					
Project Information Report Information - Data Deliverables Billing Information Project Name: I FAX I EAANL I Same as Client Link POINT Project Namage: Regulatory Immediate State Regulatory Immediate State Regulatory Immediate State Regulatory Immediate State Regulatory Immediate State Regulatory Immediate State Regulatory Immediate State Regulatory Immediate State Regulatory Immediate State Regulatory Immediate State Regulatory Immediate Regulatory Immediate Regulatory Regulatory Regulatory Regulatory Immediate Regulatory Regulatory Regulatory Regulatory Regulatory Immediate Regulatory Regulatory Regulatory Immediate Regulatory Regulatory Regulatory Regulatory Regulatory Immediate Regulatory Immediate Regulatory Immediate Regulatory Immediate Regulatory Immediate Regulatory Immediatory Regulatory Immediate Regulatory Immediate Regulatory Immediate Regulatory Immediate Regulatory Immediate Regulatory Immediate Regulatory Immediatory Immediate Regulatory Immediatory Immediate Regulatory Immediatory									<u> </u>							ļ,					
Project Information Report Information - Data Deliverables Billing Information Project Name: III FAX III FAX IIII Information Project Name: IIII ADEX IIII ADEX IIIII Information Project Namage: Regulatory Regulatory Regulatory Regulatory Regulatory Regulatory Regulatory Regulatory Regulatory IIIIIII Information Project Namage: Regulatory Regulatory Regulatory Regulatory Regulatory Regulatory Regulatory Regulatory IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII																					
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX □ EMAL □ AC																					
Project Information Report Information - Data Deliverables Elling Information Project Name: □ FAX □ EAX □ EAA □ EAX □ EAA □ □ EAA □ □ EAA □ □ □ EAA □ □ □																					
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX								<u> </u>													
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX □ EMAIL □ ADEX □ Add1 Deliverables □ Time □ ADEX □ Add1 Deliverables □ □ Time □ Yes □ No Are MCP Analytical Methods Required? □ Yes □ No Are CF RCP (Reasonable Confidence Protocis) Required? □ Yes □ No Are CF RCP (Reasonable Confidence Protocis) Required? □ Area Mixis Spike (MS) Required on this SDG? (f yes see note in Comments) □ Preservation □ Yes □ No Are CF RCP (Reasonable Confidence Protocis) Required? □ Done □ D																					
Project Information Report Information - Data Deliverables Billing Information Project Name: □ Same as Client info □ ADEx □ Add1 Deliverables □ Same as Client info □ As to so □ Not needed □ Not need									ļ												
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX □ EMAIL □ ADEx □ ADEX □ Add'1 Deliverables □ ADEX □ Add'1 Deliverables □ Add '1 Deliverables									<u> </u>												
Project Information Report Information - Data Deliverables Ellling Information Project Name: □ FAX □ EMAIL □ Add'I Deliverables □ Same as Clent info		Sample Spo			-	-					[s	Initial	Matrix	me		Dat		Sample ID		(Lab Use Only)
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX □ ADEx □ Add'1 Deliverables □ Same as Clent Info □ Criteria □ Criteria □ Criteria □ Criteria □ Standard □ RUSH (evy continued if pre-approved) □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? Urterion □ Standard □ RUSH (evy continued if pre-approved) □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Not meeded □ Done		(Please	<u> </u>		<u> </u>	_		_	_	_		ir's	Sample	Sample		Collectio					AI PHA Lah ID
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX □ EMAIL □ Same as Client info □ 90 #: □ ADEx □ ADEx □ Add1 Deliverables □ same as Client info PO #: □ ADEx □ ADEx □ Add1 Deliverables □ Same as Client info PO #: □ ADEx □ ADEx □ Add1 Deliverables □ Same as Client info PO #: □ ADEx □ Same as Client info PO #: □ Same as Client info PO #: □ ADEx □ Same as Client info PO #: □ Same as Client info PO #: □ Same as Client info PO #: □ ADEx □ Same as Client info PO #: □ Same as Client info PO #: □ Same as Client info PO #: □ ADEx □ Add1 Deliverables	eeded do ation											AN/	-	performed	MS to be	/hat tests les)	ples and w soil sampl	ents which sam re MS every 20	ple Specific Comm anic analyses requi	idicate in Samp thods for inorga	If MS is required , in (Note: All CAM me
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX □ EMAIL □ FAX □ Same as Client info POJect Information Project Name: □ FAX □ EMAIL □ ADEX □ Same as Client info POJect Information Project Assertion: □ FAX □ EMAIL □ ADEX □ Same as Client info POJect Project Assertion: □ FAX □ ADEX □ Add'I Deliverables □ Same as Client info POJect Project Manager: □ ADEX □ Add'I Deliverables □ Standard □ Standard □ RUSH (enly contimed i pre-approved) □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Add □ Add □ RUSH (enly contime of pre-approved) □ Yes □ No Are CT RCP (Reasonable Confidence Protocols) Required? □ Add □ Add □		/ / Filtra					_				YS					Limits:	tection	mments/De	usly analyzed by A	ave been previo	These samples have been previously analyzed by Alpha Other Project Specific Requirements/Common Other Projec
Project Information Report Information Project Name: □ FAX □ Project Location: □ ADEx □ Project #: □ ADEx □ Project Manager: Regulatory Require Regulatory Require ALPHA Quote #: State / Fed Program MA MCP PRESUM Turn-Around Time □ Yes □ No µ Turn-Around Time □ Yes □ No µ		SAM	/		<u> </u>								, increased	ime:	L L		lue:	Date I			Email:
Project Information Report Information Project Name: □ FAX □ Project Location: □ ADEx □ Project #: Project Manager: Regulatory Requited Program Project Manager: State /Fed Program ALPHA Quote #: MA MCP PRESUM Turn-Around Time □ Yes □ No 1	red?	Protocols) Requin	fidence	Conf	onable	Reasc	RCP (re CT I	Ą	No No		0	sprovedil	virmed if non-su	SH		fard				Fax:
Project Information Report Information Project Name: □ FAX 0 Project Location: □ ADEx □ Project #: Project Manager: Regulatory Requited Program ALPHA Quote #: MA MCP PRESUM	note in Comments)	d? SDG? (If yes see	equire on this	uired of	i) Requ	ilytical :e (MS	:P Ana × Spik	re MC Matri	ls ⊵	No No						Time	Around	Turn			Phone:
Project Information Report Information Project Name: □ FAX [] Project Location: □ ADEx [] Project #: Regulatory Requined Project Manager: State /Fed Program			REAG		- Y I V	AIAIN	CEA		UMIT	てたけど	MCP	MA					Quote #	ALPH			
Project InformationReport Information - Data DeliverablesBilling InformationProject Name: □ FAX □ EMAIL □ Same as Client infoProject Location: □ ADEx □ Add'l Deliverables □ Same as Client infoProject #: ■ Regulatory Requirements/Report Limits □ ADEx □ ADEx			1	Criteri					ram	Prog	te /Fed	Stat				.:	Manager	Project			Address:
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX □ EMAIL □ ADEx □ Add'l Deliverables □ Information □ Add'l Deliverables □ Add'l Deliverables □ Add'l Deliverables □ Add'l Deliverables □ FAX □ Fax □ Add'l Deliverables □ Fax □ Add'l Deliverables □ Fax □ Add'l Deliverables □ Fax □ Fax □ Add'l Deliverables □ Fax				6	Limit	plode	ts/Re	emen	quire	NY Re	gulato	Req					#	Project			Client:
Project Information Report Information - Data Deliverables Billing Information Project Name: □ FAX □ EMAIL □ Same as Client info □					č	erable	Deliv	Add'l			ADEX	ο					Location	Project			Client Information
Report Information - Data Deliverables	PO #		🗆 San				Ē) ema	D		I FAX	0					Name:	Project	2-9300 2-3288	TEL: 508-822-9300 FAX: 508-822-3288	TEL: 508-898-9220 FAX: 508-898-9193
		ng Information	Billin	S	rable	elive	ata D	n - D	natio	Inform	eport l	Re				nation	t Inforr	Proje	MA	MANSFIELD, MA	WESTBORO, MA
CHAIN OF CUSTODY PAGEOF Date Recid in Lab: ALPHA Job #:		HA Job #:	ALPI						ab:	'd in L	te Rec'		유 			YOC	JST	OF CL	CHAIN		

(

Aqueous Sample Reference Guide

Analyses		Methods	Container Type	Recommended Quantity	Preservative	Holding Time
INORGANICS				<u>iente anno 1997</u>		
Alkalinity		310.1, SM2320B	Plastic	250 ml	4° C	14 Days
Ammonia	3	350.1, SM4500NH ₃ -BH	Plastic	250 mi	H ₂ SO ₄ , pH<2, 4° C	28 Days
Biological Oxy	4	405.1, SM5210B	Plastic	500 ml	4° C	48 Hours
Chemical Oxygen Demand (COD) 4	410.4, SM5220D	Plastic	250 ml	H ₂ SO ₄ , pH<2, 4° C	28 Days
Chloride	3	325.2, 9251, 300.0, SM4500CI-E	Plastic	250 ml ·	4°C	28 Days
Cyanide	3	335.2, 335.1, 9010B, SM4500CN-CE, MADEP	Plastic	250 ml ·	NaOH, pH>12, 4°C	14 Days
Fluoride	3	300.0,340.2, SM4500F-B, BC	Plastic	500 ml	4° C	28 Days
Formaldehyde	8	3315, PCAM (Mod.)	Amber Glass	1000 ml	4°C	72 Hours
Hexavalent Chromium (Cr+6	7	7196A, SM3500Cr-D	Plastic	500 ml	4° C	24 Hours
MBAS	4	125.1, SM5540C	Plastic	1000 mi	4°C	48 Hours
Nitrate	3	300.0,353.2, SM4500NO ₃ -F	Plastic	250 ml	4° C	48 Hours
Nitrate/Nitrite		353.2, SM4500NO ₃ -F	Plastic	250 ml	H₂SO4, pH<2, 4° C	28 Days
Nitrite		300.0, 353.2, 354.1, SM4500NO ₃ -F, SM4500NO ₂ -B	Plastic	250 ml	4°C	48 Hours
Nitrogen, Total Kjeldahl (TKN) 3	353.3/.1 (Modified), SM4500Norg-C	Plastic	250 ml	H ₂ SO ₄ , pH<2, 4° C	28 Days
Oil & Grease	1	664	Amber Glass	(2) 1000 mi	HCI_pH<2, 4" C	28 Days
На	1	50.1, 9040B	Plastic	250 ml	4°C	Immediate
Phosphorous, Total	3	365.2, SM4500P-E	Plastic	250 ml	H ₂ SO ₄ , pH<2, 4° C	28 Days
Solids, Total (TS)	1	60.3, 2540B	Plastic	250 ml	4° C	7 Days
Solids, Total Dissolved (TDS)	1	60.1, SM2540C	Plastic	500 ml	4° C	7 Days
Solids, Total Suspended Soli		60.2, SM2540D	Plastic	1000 ml	4°C	7 Days
Solids, Total Volatile		60.4, SM2540E	Plastic	500 ml	4°C	7 Days
Sulfate		975.4, 9038, SM4500SO₄-E, 300.0	Plastic	250 ml	4°C	28 Days
Sulfide		76.2, 9030B, SM4500S ₂ -AD	Plastic	(2) 250 ml	ZnOAC, NaOH, pH>9, 4°C	7 Days
Total Metals	21	00.7, 200.8, 6010B, 6020, 7000A	Plastic	500 ml	HNO3, pH<2, 4° C	180 Days, Hg 28 da
Total Organic Carbon (TOC)	4	15.1, 9060, SM5310C	Amber Glass	(2) 40 ml VOA Vials	H ₂ SO ₄ , pH<2, 4° C	28 Days
Total Phenol	4:	20.1, 9065, SM510ABC	Amber Glass	(2) 1000 ml	H₂SO4, pH<2, 4° C	28 Days
Total Residual Chlorine	3:	30.1, SM4500CI-D	Plastic	500 ml	4° C	24 Hours
Turbidity	11	80.1, SM2130B	Plastic	500 ml	4° C	48 Hours
VOLATILE ORGANICS	BY GC/MS					Ι.
Volatile Organics	52	24.2	Amber Glass Tefion Lined	(2) 40 ml VOA Vlals	Ascorbic Acid HCL, pH<2, 4° C	14 Days
Volatile Organics	62	24 .	Amber Glass Teflon Lined	(2) 40 ml VOA Viais	Na ₂ S ₂ O ₃ , 4° C	7 Days
Volatile Organics	82	260B	Amber Glass Teflon Lined	(2) 40 mi VOA Vials	HCL, pH<2, 4° C	14 Days
EXTRACTABLE ORGAN	NICS BY GC	:/MS		2.3a · · · · ·		1
Acid/Base Neutral Extractables	s (ABN) 82	270C	Amber Glass Teflon Lined	(2) 1000 ml	4° C	7 Days (Extraction)
Acid/Base Neutral Extractables	(ABN) 62	25	Amber Glass Teflon Lined	(2) 1000 mi	Na ₂ S ₂ O ₃ , 4° C	7 Days (Extraction)
Polynuclear Aromatic Hydroca	bons (PAH) 62	25	Amber Glass Teflon Lined	(2) 1000 ml	Na ₂ S ₂ O ₃ , 4° C	7 Days (Extraction)
Polynuclear Aromatic Hydroca	rbons (PAH) 82	270C, 8270C-SIM	Amber Glass Teflon Lined	(2) 1000 ml	4° C	7 Days (Extraction)
EXTRACTABLE ORGAN	ICS BY GC					
Pesticides (Organochlorine)	80	081A	Amber Glass Teflon Lined	(2) 1000 ml	4° C	7 Days (Extraction)
Pesticides (Organochlorine)	60	08	Amber Glass Teflon Lined	(2) 1000 ml	Na ₂ S ₂ O ₃ , 4° C	7 Days (Extraction)
PCBs	80	082	Amber Glass Teflon Lined	(2) 1000 ml	4° C	7 Days (Extraction)
PCBs	60	08	Amber Glass Teflon Lined	(2) 1000 ml	Na ₂ S ₂ O ₃ , 4° C	7 Days (Extraction)
Chlorinated Herbicides		151A	Amber Glass Teflon Lined	(2) 1000 ml	4°C	7 Days (Extraction)

PETROLEUM HYDROCARBON	S				
MA-DEP EPH	EPH-04-1	Amber Glass Teflon Lined	(2) 1000 ml	HCI, pH<2, 4° C	14 Days (Extraction
MA-DEP VPH	VPH-04-1.1	Amber Glass Teflon Lined	(2) 40 ml VOA Vials	HCl, pH<2, 4° C	14 Days
СТ ЕТРН	CT ETPH	Amber Glass Teflon Lined	(2) 1000 ml	4° C	7 Days (Extraction)
TPH - Oil & Grease	EPA 1664	Amber Glass Teflon Lined	(2) 1000 ml	HCl, pH<2, 4° C	28 Days
ME DEP TPH DRO	ME 4.1.25	Amber Glass Teflon Lined	(2) 1000 ml	HCl, pH<2, 4° C	7 Days (Extract
ME DEP TPH GRO	ME 4.2.17	Amber Glass Tefion Lined	(2) 40 mi VOA Viais	HCI, pH<2, 4° C	14 Days
TPH-DRO ·	8015B	Amber Glass Teflon Lined	(2) 1000 ml	4° C	7 Days (Extraction)
TPH-GRO	8015B	Amber Glass Teflon Lined	(2) 40 ml VOA Vials	HCl, pH<2, 4° C	14 Days
TPH GC/FID Quantitation only	8015B (M)	Amber Glass Tefion Lined	(2) 1000 ml	4° C	7 Days (Extraction)
Petroleum Hydrocarbon Identification (PHI)	8015B (M)	Amber Glass Teflon Lined	(2) 1000 ml	4° C	7 Days (Extraction)

Soil/Solid Sample Reference Guide

Analyses	Methods	Container Type	Recommended Quantity	Preservative	Holding Time
INORGANICS					
Cyanide	9010B, SM4500CN-CE, MADEP	Amber Glass	4 oz Contalner	4° C '	14 Days
Hexavalent Chromium (Cr+6)	7196A	Amber Glass	4 oz Container	4°C	30 Days
Mercury	7471A	Amber Glass	4 oz Container	4° C	28 Days
Metals	6010B, 6020, 7000A	Amber Glass	8 oz Container	4°C	180 Days
pН	9045C	Amber Glass	4 oz Container	4° C	Immediate
Total Organic Carbon (TOC)	LK (Lloyd Kahn Method)	Amber Glass	4 oz Container	4° C	14 Days
Total Phenol	9065	Amber Glass	4 oż Contalner	4° C	28 Days
VOLATILE ORGANICS BY GC//	MS			· · · ·	
Volatile Organics	8260, 5035, (High Level)	40 ml Amber VOA Vial	15 Grams	MeOH, 4° C	14 Days
Volatile Organics	8260, 5035, (Low Level)	(2) 40 ml Amber VOA	5 Grams	NaSO ₄ , 4° C	14 Days
Volatile Organics	8260, 5035, (Low Level)	(2) 40 ml Amber VOA	5 Grams	Water, 4° C	48 Hours
EXTRACTABLE ORGANICS BY	GC/MS				
Acid/Base Neutral Extractables (ABN)	8270C	Amber Glass Teflon Lined	4 oz Container	4°C	14 Days (Extractio
Polynuclear Aromatic Hydrocarbons (PAH)	8270C, 8270C-SIM	Amber Glass Teflon Lined	4 oz Contalner	4° C	14 Days (Extractio
EXTRACTABLE ORGANICS BY	GC				·
Pesticides (Organochlorine)	8081A	Amber Giass Teflon Lined	4 oz Container	4°C	14 Days (Extraction
PCBs	8082	Amber Glass Teflon Lined	4 oz Container	4° C	14 Days (Extractio
Chlorinated Herbicides	8151A	Amber Glass Teflon Lined	4 oz Container	4° C	14 Days (Extractio
PETROLEUM HYDROCARBON	S			1	
MA-DEP EPH	EPH-04-1	Amber Glass Tefion Lined	4 oz Container	4°C	14 Days (Extractio
MA-DEP VPH	VPH-04-1.1	40 ml Amber VOA Vial	15 Grams	MeOH, 4° C	28 Days
TPH-8100M	GC-FID Qualitative Fingerprint	Amber Glass Teflon Lined	4 oz Container	4° C	14 Days (Extractio
СТ ЕТРН	CT ETPH	Amber Glass Teflon Lined	4 oz Container	4° C	14 Days (Extractio
TPH - Oil & Grease	EPA 1664	Amber Glass Teflon Lined	4 oz Contalner	4°C	28 Days
ME DEP TPH DRO	ME 4.1.25	Amber Glass Teflon Lined	4 oz Container	4° C	14 Days (Extractio
ME DEP TPH GRO	ME 4.2.17	40 ml Amber VOA Vial	15 Grams	MeOH, 4° C	14 Days
TPH-DRO	8015B	Amber Glass	4 oz Container	4° C	14 Days (Extractio
TPH-GRO	8015B	40 ml Amber VOA Vial Amber Glass	15 Grams	MeOH, 4° C	14 Days
TPH GC/FID Quantitation only	8015B (M)	Amber Glass Teflon Lined	4 oz Container	4° C	14 Days (Extractio
Petroleum Hydrocarbon Identification (PHI)	8015B (M)	Amber Glass Teffon Lined	4 oz Container	4°C	14 Days (Extraction
TCLP				1	1
Volatiles	1311, 82608	Large Amber Glass VOA Vial Teflon Lined	8 oz Contalner	4° C	14 Days (Extraction
Semivolatiles	1311, 8270C, 8081A, 8151A	Amber Glass Teflon Lined	8 oz Container	4° C	14 Days (Extraction
Metals	1311, 6010B, 6020, 7000A	Amber Glass	8 oz Contalner	4° C	180 Days (Extraction
Mercury	1311, 7470A	Amber Glass	8 oz Container	4°C	28 Days (Extractio
	stborough, MA Mansfield		1	1	

COMMONWEALTH OF MASSACHUSETTS

DEPARTMENT OF ENVIRONMENTAL PROTECTION

STANDARD REFERENCES FOR MONITORING WELLS SECTION 1.2 TABLE OF CONTENTS

Section 1.2 Page i January 1991

SECTION 1.2 TABLE OF CONTENTS

1.0 Introduction

- 1.1 Foreword
- 1.2 Table of Contents
- 1.3 Definitions

2.0 First Steps

- 2.1 Reconnaissance Surveys
- 2.2 Work and Cost Plans (Reserved)

.......

2.3 Health and Safety Plans

3.0 Subsurface Investigations

- 3.1 Exploratory Test Pits
- 3.2 Drilling Techniques
- 3.3 Borings in Contaminated Areas

- 3.3 Borings in Containing of 1 3.4 In-Situ Sampling of Soil 3.5 Soil Classification 3.6 In-Situ Sampling of Rock 3.7 Rock Classification 3.8 Laboratory Tests for Soil
- 3.9 Plugging Boreholes

4.0 Piezometers, Observation Wells and Monitoring Wells

- 4.1 Monitoring Well Network Design
- 4.2 Selection of Well Construction Materials
- 4.3 Well Installation Procedures
- 4.4 As-built Notes and Records
- 4.5 Well Development
- 4.6 Decommissioning of Monitoring Wells
- 5.0 Interpretation of Ground Water and Aquifer Characteristics
 - 5.1 Water Level Measurements
 - 5.2 In-Situ Hydraulic Conductivity Tests
 - 5.3 Pumping Tests
 - 5.4 Packer Tests
 - 5.5 Surveying and Datum Planes
- 6.0 Sampling of Monitoring Wells
 - 6.1, Quality Assurance/Quality Control
 - 6.2 sampling rechniques
 - 6.3 sample Handling
 - 6.4 Chain of Custody
 - 6.5 Decontamination of Sampling Equipment

Section 1.2 Page ii January 1991

.

Section 1.2 Table of Contents (continued)

' 7.0 Computer Models (Reserved)

8.0 Geophysical Techniques (Reserved)

EQASOP-GW 001 Region 1 Low-Stress (Low-Flow) SOP Revision Number: 3 Date: July 30, 1996 Revised: January 19, 2010 Page 1 of 30

U.S. ENVIRONMENTAL PROTECTION AGENCY REGION I

LOW STRESS (low flow) PURGING AND SAMPLING PROCEDURE FOR THE COLLECTION OF GROUNDWATER SAMPLES FROM MONITORING WELLS

Quality Assurance Unit U.S. Environmental Protection Agency – Region 1 11 Technology Drive North Chelmsford, MA 01863

The controlled version of this document is the electronic version viewed on-line only. If this is a printed copy of the document, it is an uncontrolled version and may or may not be the version currently in use.

This document contains direction developed solely to provide guidance to U.S. Environmental Protection Agency (EPA) personnel. EPA retains the discretion to adopt approaches that differ from these procedures on a case-by-case basis. The procedures set forth do not create any rights, substantive or procedural, enforceable at law by party to litigation with EPA or the United States.

/~/9

Date

Prepared by: (Charles Porfert, Quality Assurance Unit) Date

Approved by: (Gerard Sotolongo, Quality Assurance Unit)

EQASOP-GW 001 Region 1 Low-Stress (Low-Flow) SOP Revision Number: 3 Date: July 30, 1996 Revised: January 19, 2010 Page 2 of 30

Revision Page

Date	. Rev #	Summary of changes	Sections
7/30/96	2	· Finalized	
01/19/10	3	Updated	All sections
		· · · · · · · · · · · · · · · · · · ·	
•			
		• •	
	· ·		
	· ·		· ·

EQASOP-GW 001 Region 1 Low-Stress (Low-Flow) SOP Revision Number: 3 Date: July 30, 1996 Revised: January 19, 2010 Page 3 of 30 Page TABLE OF CONTENTS USE OF TERMS **SCOPE & APPLICATION** BACKGROUND FOR IMPLEMENTATION 7 **HEALTH & SAFETY** 7

9

13

13

14

19

21

21

22

22

24

25

29

30

PERSONNEL QUALIFICATIONS

EQUIPMENT AND SUPPLIES

EQUIPMENT/INSTRUMENT CALIBRATION

PRELIMINARY SITE ACTIVITIES

PURGING AND SAMPLING PROCEDURE

DECONTAMINATION

FIELD QUALITY CONTROL

FIELD LOGBOOK

DATA RÉPORT

CAUTIONS

REFERENCES

APPENDIX A PERISTALTIC PUMPS

APPENDIX B SUMMARY OF SAMPLING INSTRUCTIONS LOW-FLOW SETUP DIAGRAM

APPENDIX C EXAMPLE WELL PURGING FORM

Commonwealth of Massachusetts Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

Southeast Regional Office • 20 Riverside Drive, Lakeville MA 02347 • 508-946-2700

Charles D. Baker Governor

Karyn E. Polito Lleutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

September 22, 2017

John-E. Shaffer Marcus, Errico, Emmer & Brooks, P.C. 45 Braintree Hill Office Park Suite 107 Braintree, Massachusetts 02184 RE:—MASHPEE:-Windchime-Condominium— Wastewater Treatment Facility Permit No.: 263-3M1 Transmittal No. X267747

Dear Mr. Witter:

In connection with the referenced matter, enclosed is your copy of the fully executed Escrow Agreement.

Should you have any questions regarding this matter, please contact Christos Dimisioris at (508) 946-2736.

Sincerely,

Brian A. Dudley Burcau of Water Resources

D/CD/ Enclosures

P:\12\263 - 3M1 - Mashpee - Windchime Condominium FAM cover letter.docx

This Information is available in alternate format. Contact Michelle Waters-Ekanem, Director of Diversity/Civil Rights at 617-292-6761. TTY# MassRelay Service 1-800-439-2370 MassDEP Websile: www.mass.gov/dop

Printed on Recycled Paper

ESCROW AGREEMENT FOR THE IMMEDIATE REPAIR AND/OR REPLACEMENT ACCOUNT GROUNDWATER DISCHARGE PERMIT NO. 263 (3) AND ALL RENEWALS

This Escrow Agreement is entered into by and between: the Massachusetts Department of Environmental Protection, a duly constituted agency of the Commonwealth of Massachusetts established pursuant to M.G.L. c. 21A, § 7 ("Department") having a principal office located at One Winter Street, Boston, Massachusetts 02108, and a

Southeast Regional Office Regional Office	located at
20 Riverside Drive	Lakeville, Massachusetts 02347;
Street Address	City/Town, State, Zip Code
Windchime Condominium Trust,	
Permittee Name (hereinafter "Permittee")	

having a principal place of business located at:

c/o American Properties Team, 500 Cummings Park, Suite 6050

	Street Address			
	Woburn		Massachusetts	01801;
	City/Town		State	Zip Code
and	500 Cummings Park,	A.P.T., Escrow Agent Suite 605 2	having a principal	place of business located at:
	Street Address			
	Woburn, MA 01804.			

City/Town, State, Zip Code

The Department, the Permittee, and the Escrow Agent are hereinafter collectively referred to as the "Parties."

Recitals

WHEREAS, on August _, 1987 (date) the Department issued to the Permittee an individual Ground Water Discharge Permit or granted the Permittee coverage under a General Permit ("Permit");

WHEREAS, the Permit authorizes the Permittee to operate the Privately Owned Wastewater Treatment Facility ("PWTF") located at

Windchime Condominium, Great Neck Road, Mashpee, Massachusetts

and to discharge effluent from the PWTF to the ground water in accordance with the terms and conditions set forth therein;

WHEREAS, the Permit requires the Permittee to use a Department approved form to establish and maintain a financial assurance mechanism that provides for an immediate repair and replacement account to assure that funds will be available when needed for the immediate repair and/or replacement of the PWTF;

WHEREAS, this Escrow Agreement is the Department approved form to establish and maintain a financial assurance mechanism that provides for the immediate repair and replacement account required by the Permit. This Escrow Agreement defines the terms and conditions under which the immediate repair and replacement account will be held and disbursed;

WHEREAS, the Permit and the Ground Water Discharge Regulations established at 314 CMR 5.10(8) (I) and 314 CMR 5.15(5)(a) require that funds equal to 25% of the estimated construction cost of the PWTF be deposited in an interest bearing repair and replacement escrow account;

WHEREAS, the Parties agree that the estimated construction cost of the PWTF, including the treatment plant, the collection system, and associated mechanical equipment, is \$663,000.00;

WHEREAS, the amount required to be placed in the immediate repair and replacement escrow account is \$165,750.00 ("Required Escrow Amount"); and

escrowag.doc • 02/01/17

Escrow Agreement • Page 1 of 7

WHEREAS, the Escrow Agent agrees to accept, hold, and disburse the escrow account funds and the earnings thereon in accordance with the terms of this Escrow Agreement.

NOW, THEREFORE, in consideration of the recitals above, the covenants and agreements set forth herein, and other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the Parties agree as follows:

Escrow Account

1. Permittee shall deliver to the Escrow Agent, a third-party acting in a fiduciary capacity, the Required Escrow Amount of \$165,750.00 at least thirty (30) calendar days prior to

date PWTF is expected to commence operation for new facilities or date of renewal or modification of an existing permit for existing facilities An'applicant or permittee may obtain additional time to establish the account, if a request is submitted to the Department providing sufficient justification for the extension and if the Department approves the request in writing.

2. Within two (2) business days of receipt of the Required Escrow Amount or additional funds pursuant to Paragraph 3 below, the Escrow Agent shall place the Required Escrow Amount in an interest bearing account ("Escrow Account") at

East	ern Bank	
Name of	Institution/Bank	
located at	Boston	, Massachusetts ("Depository Bank").

All funds delivered by the Permittee to the Escrow Agent shall be deposited and held by the Escrow Agent in the Escrow Account #1925[3]39.

3. Within ninety (90) calendar days of any disbursement from the Escrow Account, the Permittee shall deliver additional funds to the Escrow Agent so that the amount available in the Escrow Account shall be no less than the Required Escrow Amount, provided that at no time may the Escrow Account incur a negative balance. An applicant or permittee may obtain additional time to replenish the account, if a request is submitted to the Department providing sufficient justification for the extension and if the Department approves the request in writing.

4. The Depository Bank shall be entitled to charge the Escrow Account for services related to maintenance of the Escrow Account at a rate not exceeding the Depository Bank's standard charges to other customers for similar services.

5. The Escrow Account shall be opened with the signature of the Escrow Agent indicating that checks drawn against the Escrow Account shall be signed by the Escrow Agent and by no other person. Disbursements shall be made from the Escrow Account only in accordance with the terms of this Agreement.

6. The Escrow Agent shall maintain a record of all deposits, income, disbursements, and other transactions concerning the Escrow Account. On or before January 15th of each year, the Escrow Agent shall provide to each of the Parties a written accounting of the initial and current balance as well as of all transactions that occurred during the prior calendar year. Upon request, the Parties shall have the right to inspect, at reasonable times, all books and records of the Escrow Agent relating to the Escrow Account, including, without limitation, all accounting and bank statements, checks, receipts, and disbursements. The Escrow Agent shall send a copy of such books and records to a Party within thirty (30) calendar days of a request.

7. The Escrow Agent shall keep in its possession all book(s) and records relating to the Escrow Account until such time as they are delivered to a successor Escrow Agent pursuant to Paragraph 16 below or to the Permittee and the Department pursuant to Paragraph 29 below.

Disbursements

8. The Escrow Agent shall make disbursements of the Escrow Account funds including any accrued interest only as follows:

(a) Seven (7) business days following receipt of written direction from the Permittee stating that funds held in the Escrow Account are required to pay for the immediate repair and/or replacement of the PWTF or any of its components, the Escrow Agent shall disburse such funds to the Permittee in accordance with the Permittee's written direction, unless the Department objects in writing to such disbursement prior to the seventh (7th) business day. The Permittee's written direction shall include invoice(s) evidencing the expenditure made or to be made. The Permittee shall simultaneously send a copy of the written direction including invoice(s) to the attention of the Department as set forth in Paragraph 15 below.

Escrow Agreement • Page 2 of 7

1

(b) The Escrow Agent shall disburse all funds in the Escrow Account to the Permittee within five (5) business days of receipt of a joint written direction from the Department and the Permittee that the Escrow Account funds are no longer required to fund the immediate repair and/or replacement of the PWTF or any of its components.

(c) Notwithstanding Paragraphs 8(a) and (b) above, the Escrow Agent shall disburse the Escrow Account funds to the Permittee or the Department in accordance with any final order, judgment, or decree of a court of competent jurisdiction from which the Parties do not appeal or from which no further right of appeal exists.

(d) The Escrow Agent shall disburse funds to itself for services rendered in accordance with Paragraph 12 below.

Duties and Liabilities of Escrow Agent

9. The Escrow Agent shall have no liability or obligation with respect to the Escrow Account funds except for the Escrow Agent's willful misconduct, bad faith or gross negligence. The Escrow Agent shall be under no duty to: (a) pass upon the adequacy of any documents; (b) determine whether any of the Parties are complying with the terms and provisions of this Escrow Agreement; or (c) determine the identity or authority of any person purporting to be a signatory authorized by the Permittee or the Department.

10. The Escrow Agent may conclusively rely upon, and shall be protected in acting on, a statement, certificate, notice, requisition, order, approval, or other document believed by the Escrow Agent to be genuine and to have been given, signed and presented by a duly authorized agent of the Permittee or Department. The Escrow Agent shall have no duty or liability to verify any statement, certificate, notice, requisition, order, approval or other document and its sole responsibility shall be to act only as expressly set forth in this Escrow Agreement. The Escrow Agreement and its sole responsibility shall be to act only as expressly set forth in this Escrow Agreement. The Escrow Agreement. The Escrow Agreement or expressly provided for in this Escrow Agreement. The Escrow Agent shall be under no obligation to institute or defend any action, suit, or proceeding in connection with this Escrow Agreement, unless first indemnified to its satisfaction. The Escrow Agent may consult with counsel of its choice including shareholders, directors and employees of the Escrow Agent, with respect to any question arising under or in connection with this Escrow Agreement.

11. The Escrow Agent may refrain from taking any action, other than keeping all property held by it in escrow if the Escrow Agent: (a) is uncertain about its duties or rights under this Escrow Agreement; or (b) receives instructions that, in its opinion, are in conflict with any of the terms and provisions of this Escrow Agreement, until it has resolved the conflict to its satisfaction, received a final judgment by a court of competent jurisdiction (if it seems such action necessary or advisable), or received instructions executed by both the Department and the Permittee.

Escrow Agent's Fee

12. The Escrow Agent shall be entitled to compensation from the Permittee for its services under this Escrow Agreement in accordance with the fee schedule attached to this Escrow Agreement as Exhibit A. The attached fee schedule constitutes full compensation to the Escrow Agent for services contemplated by this Escrow Agreement. The Escrow Agent is authorized to compensate itself from Escrow Account funds in accordance with the attached schedule following thirty (30) calendar days prior written notice to Permittee. The Escrow Account shall be replenished by the Permittee as required by Paragraph 3 above.

Investment Risk

13. In no event shall the Escrow Agent have any liability as a result of any loss occasioned by the financial difficulty or failure of any institution, including Depository Bank, or for failure of any banking institution, including Depository Bank, to follow the instructions of the Escrow Agent. Without limiting the generality of the foregoing, in no event shall the Escrow Agent incur any liability as the result of any claim or allegation that the Escrow Agent should have invested the escrow funds in United States Treasury Bills rather than hold same on deposit at the Depository Bank, or visa versa.

Notices

14. All notices, certifications, authorizations, requests, or other communications permitted or required under this Escrow Agreement shall be in writing and shall be deemed duly provided when deposited in the United States mail, postage prepaid, certified or registered mail, return receipt requested to the other Parties at the addresses set forth in Paragraph 15 below. In addition, the Parties may provide notice utilizing the alternate methods of hand delivery, Federal Express, or other recognized overnight courier. Notices provided by hand delivery, Federal Express or other recognized overnight courier shall be deemed duly provided when received at the addresses set forth in Paragraph 15 below.

Escrow Agreement • Page 3 of 7

15. All notices, certifications, authorizations, requests, or other communications permitted or required shall be delivered as follows:

To the Department:

To the Permittee:

Windchime Condominium Trust

c/o American Properties Team, 500 Cummings Park, Suite 6050

Woburn, Massachusetts 01801

To the Escrow Agent:

American Properties Team,

500 Cummings Park, Suite 6050

Woburn, MA 01804

or to such other place or to the attention of such other individual as a Party from time to time may designate by written notice to all other Parties.

Resignation, Removal and Successor Escrow Agent

16. If, for any reason, the Escrow Agent is unable or unwilling to continue to act as Escrow Agent, then it shall give written notice to the other Parties of its intent to resign as Escrow Agent. Within ten (10) business days following receipt of such notice, the Parties shall agree upon a successor escrow agent, formally appoint the successor escrow agent and provide written notification to the Escrow Agent of the subsequent appointment. Upon appointment, such successor escrow agent shall execute and deliver to its predecessor and to the Parties an instrument in writing accepting such appointment. Thereupon, without further action, such successor escrow agent shall be fully vested with all the rights, immunities, and powers, and shall be subject to all the duties and obligations of its predecessor. The predecessor Escrow Agent shall, within three (3) business days following receipt of the written acceptance of subsequent appointment, deliver to the Escrow Agent's successor all books and records, funds, and other property held by the Escrow Agent under the Escrow Agreement. Upon such delivery, all obligations of the Escrow Agent under this Escrow Agreement shall automatically terminate. If no successor Escrow Agent is designated within the prescribed ten (10) business day period, or if written acceptance of subsequent appointment is not received within such period, then the Escrow Agent's obligations under this Escrow Agereement shall continue unless otherwise agreed to by the Parties.

17. The Escrow Agent may be removed at any time by a written instrument or concurrent written instruments signed by the Department and the Permittee and delivered to the Escrow Agent.

18. If at any time the Escrow Agent shall resign, be removed, be dissolved, or otherwise become incapable of acting, or the position of the Escrow Agent shall become vacant for any reason, the Parties shall promptly appoint a successor Escrow Agent.

Interest

19. All interest income accrued on funds in the Escrow Account shall become part of the Escrow Account and shall remain in the Escrow Account. The Permittee shall be solely responsible for the payment of all federal and state taxes on accrued Escrow Account interest.

escrowag.doc + 02/01/17

Escrow Agreement • Page 4 of 7

Miscellaneous

20. This Escrow Agreement constitutes the entire agreement between the Parties relating to the holding, investment, and disbursement of the Escrow Account funds, but not relating to the extension of the establishment of funds covered by Paragraph 1 and the extension of the replenishment of funds covered by paragraph 3 above.

21. This Escrow Agreement shall be binding upon, and shall inure to the benefit of the Parties hereto and their successors and assigns.

22. This Escrow Agreement shall be governed by and be construed and interpreted in accordance with the laws of the Commonwealth of Massachusetts without giving effect to the conflict of laws principles thereof.

23. This Escrow Agreement shall be interpreted as an instrument under seal.

24. This Escrow Agreement may be executed in any number of counterparts each of which shall constitute an original and all counterparts shall constitute one Agreement.

25. This Escrow Agreement may not be assigned, amended, altered, or modified except by written instrument duly executed by all the Parties.

26. The Permittee shall not transfer Groundwater Discharge Permit #263-3, and the Department shall not approve said transfer, unlessand until the proposed new permittee establishes a new financial assurance mechanism that meets the requirements of said permit and 314 CMR 5.00, and/or the Permittee, the proposed new permittee, the Department and the Escrow Agent agree to modify this agreement to substitute the proposed new permittee for the Permittee.

27. In the event that any party to this Escrow Agreement commences a lawsuit or other proceeding relating to or arising from this Escrow Agreement, the Parties agree that the courts of the Commonwealth of Massachusetts, excluding any federal court sitting therein, shall have the sole and exclusive jurisdiction over any such proceeding. The Parties agree to: (a) waive any objection to such venue; (b) submit to the jurisdiction of the courts so specified; and (c) accept service of process to vest personal jurisdiction over them in these courts.

28. To the extent any provision of this Escrow Agreement is prohibited by or held invalid under applicable law, such provision shall be ineffective to the extent of such prohibition or invalidity, without invalidating the remainder of such provision or the remaining provisions of this Escrow Agreement.

29. This Escrow Agreement shall terminate, and the Escrow Agent shall be relieved of all liability, after: (a) all funds in the Escrow Account have been properly disbursed in accordance with the terms and conditions of this Agreement; (b) the Escrow Agent has provided a final accounting of all transactions hereunder to the Parties; and (c) a copy of all books and records relating to the Escrow Account has been delivered to the Permittee, and, if requested, to the Department.

Effective Date

30. This Agreement shall take effect on the latest date of execution by the Department, Permittee or Escrow Agent.

IN WITNESS WHEREOF, the Parties have caused this Escrow Agreement to be duly executed as set forth below.

FOR THE MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

By / Cle	9-22-17
DAND JOhnster	Date
Printed Name David Regard Duttes Title	

escrowag.doc + 02/01/17

Escrow Agreement - Page 5 of 7

FOR THE PERMITTEE

Joseph Mouney for Bot Aug. 15, 2017 Situature Joseph Mouney Printed Name BOARQ. ChAIR Title Ву Title FOR THE ESCROW AGENT October 17, 2017 Date Вy Signature Printed Name Pre Title

Escrow Agreement • Page 6 of 7

EXHIBIT A Escrow Agent's Fee Schedule

\$600	Foos - ESLPON maintenance	\$100 \$	/hour /hour	and the sal	server t	as necessary	
To be adjusted every two (2)							
		-					

1

Escrow Agreement • Page 7 of 7

:
;
;

Commonwealth of Massachusetts Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

Southeast Regional Office • 20 Riverside Drive, Lakeville MA 02347 • 508-946-2700

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

September 21, 2017

Anthony Colletti Windchime Point Condominium Trust c/o American Properties Team, Inc. 500 Cummings Park, Suite 6050 Woburn, Massachusetts 01801 RE: MASHPEE: Windchime Condominium Wastewater Treatment Facility Permit No.: 263-3M1 Transmittal No. X267747

Dear Mr. Colletti:

In response to your application for a permit to discharge into the ground a treated effluent from the treatment works at the above referenced location and after due public notice, I hereby issue the attached final permit.

Since no comments were received by the Department during the public comment period related to the terms of the permit, in accordance with 310 CMR 2.08, the permit becomes effective at issuance.

Parties aggrieved by the issuance of this permit are hereby advised of their right to request an Adjudicatory Hearing under the provisions of Chapter 30A of the Massachusetts General Laws and 314 CMR 1.00, Rules for the Conduct of Adjudicatory Proceedings. Unless the person requesting the adjudicatory hearing requests and is granted a stay of the terms and conditions of the permit, the permit shall remain fully effective.

If you should have any questions on any information provided with this letter please contact Christos Dimisioris at (508) 946-2736.

Sincerely,

Brian A. Dudley Bureau of Water Resources

This information is available in alternate format. Contact Michelle Waters-Ekanem, Director of Diversity/Civil Rights at 617-292-5751. TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep

Printed on Recycled Paper

D/CD/ Enclosure

cc: Glen Harrington Mashpee Board of Health 16 Great Neck Road North Mashpee, Massachusetts 02649 (with enclosure)

> Todd Chaplin Mount Hope Engineering, Inc. 1788 G.A.R. Highway Swansea, Massachusetts 02777 (with enclosure)

John E. Shaffer Marcus Errico Emmer & Brooks, P.C. 45 Braintree Hill Office Park Braintree, Massachusetts 02184 (with enclosure)

ecc: DEP/Boston DEP/SERO: Cheryl Bump

P:\12\263 - 3M1 - Mashpee - Windchime Condominium permit cover letter.docx

Commonwealth of Massachusetts Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

Southeast Regional Office • 20 Riverside Drive, Lakeville MA 02347 • 508-946-2700

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

Individual Groundwater Discharge Permit Fact Sheet

APPLICANT, FACILITY INFORMATION, and DISCHARGE LOCATION

Name and Address of Applicant:

Windchime Condominium Association, c/o American Properties Inc., 500 West Cummings Pk, Suite 6050, Woburn, Massachusetts 01801.

Name and Address of Facility where discharge occurs:

Windchime Condominium, Great Neck Road, Mashpee, MA

Discharge Information:

Groundwater Discharge Permit Number: 263 - 3M1

The Groundwater Discharge Permit will allow the applicant to continue to discharge 40,000 gallons per day of treated sanitary wastewater from a 180 unit residential condominium. The discharge is not in a Zone II of a public water supply.

LIMITATIONS AND CONDITIONS П.

Discharge permit limitations are as listed in the ground water permit and are in conformance with 314 CMR 5.00, the Groundwater Discharge Permit Program.

Ш PERMIT BASIS AND EXPLANATION OF EFFLUENT LIMITATIONS

An Individual Groundwater Discharge permit is required for this discharge in accordance with the Massachusetts Clean Water Act, M.G.L. c. 21, s. 26-53 and 314 CMR 5.03.

This information is available in alternate format. Call Michelle Waters-Ekanem, Diversity Director, at 617-292-5751. TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep

Printed on Recycled Paper

Effluent limitations are based upon the location of the discharge, the level of treatment, consideration of human health protection criteria and protection of the groundwaters of the Commonwealth.

IV. COMMENT PERIOD, HEARING REQUESTS, AND PROCEDURES FOR FINAL DECISIONS

The public comment period for this permit is thirty (30) days following public notice in *The Environmental Monitor*. The public notice for this Individual Groundwater Discharge Permit occurred on July 12, 2017.

Requests for an adjudicatory hearing must be submitted within thirty (30) days of the issuance/denial of the permit, by any person who is aggrieved by such issuance/denial.

A final decision on the issuance/denial of this permit will be made after the public notice period, and review of any comments received during this period.

V. STATE CONTACT INFORMATION

Additional information concerning the draft permit may be obtained between the hours of 9:00 a.m. and 5:00 p.m. Monday through Friday excluding holidays, from:

Christos Dimisioris DEP /SERO 20 Riverside Drive Lakeville, MA 02347 (508) 946-2736

Brian A. Dudley / Bureau of Water Resources

September 21,2010

Date

P:\12\263 - 3M1 - Mashpee - Windchime Condominium fact sheet.docx

Commonwealth of Massachusetts Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

Southeast Regional Office • 20 Riverside Drive, Lakeville MA 02347 • 508-946-2700

Charles D. Baker Governor

Karyn E. Polito Lieutenant Governor Matthew A. Beaton Secretary

> Martin Suuberg Commissioner

INDIVIDUAL GROUNDWATER DISCHARGE PERMIT

Name and Address of Applicant: Windchime Condominium Association, c/o American Properties Inc., 500 West Cummings Pk, Suite 6050, Woburn, Massachusetts 01801.

Date of Application:December 17, 2015Application/Permit No.263 - 3M1Date of Issuance:May 13, 2016Date of Expiration:May 13, 2021Effective Date:May 13, 2016Date Modified:September 21, 2017

AUTHORITY FOR ISSUANCE

Pursuant to authority granted by Chapter 21, Sections 26-53 of the Massachusetts General Laws, as amended, 314 CMR 2.00, and 314 CMR 5.00, the Massachusetts Department of Environmental Protection (the Department) hereby issues the following permit to: Windchime Condominium Trust (hereinafter called "the permittee") authorizing discharges from the on-site wastewater treatment facility to the ground located at Windchime Condominium, Great Neck Road, Mashpee, MA (180 unit residential condominium with a total of 363 bedrooms), such authorization being expressly conditional on compliance by the permittee with all terms and conditions of the permit hereinafter set forth.

Brian A. Dudley Bureau of Water Resources

September 21, 2.000

This information is available in alternate format. Call Michelle Waters-Ekanem, Diversity Director, at 617-292-5751. TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep

Printed on Recycled Paper

I. SPECIAL CONDITIONS

A. Effluent Limits

The permittee is authorized to discharge into the ground from the wastewater treatment facilities for which this permit is issued a treated effluent whose characteristics shall not exceed the following values:

Effluent Characteristics	Discharge Limitations
Flow	40,000 GPD
Oil and grease	15 mg/l
Total Suspended Solids (TSS)	30 mg/l
Total Nitrogen ($NO_2 + NO_3 + TKN$)	10 mg/l
Nitrate-Nitrogen	10 mg/l
Biochemical Oxygen Demand, 5-day @20°C (BOD ₅)	30 mg/l

a) The pH of the effluent shall not be less than 6.5 nor greater than 8.5 at any time or not more than 0.2 standard units outside the naturally occurring range.

b) The discharge of the effluent shall not result in any demonstrable adverse effect on the groundwater or violate any water quality standards that have been promulgated.

c) The monthly average concentration of BOD and TSS in the discharge shall not exceed 15 percent of the monthly average concentrations of BOD and TSS in the influent into the permittee's wastewater treatment facility.

d) When the average annual flow exceeds 80 percent of the permitted flow limitations, the permittee shall submit a report to the Department describing what steps the permittee will take in order to remain in compliance with the permit limitations and conditions, inclusive of the flow limitations established in this permit.

B. Monitoring and Reporting

1) **INFLUENT:**

The permittee shall monitor and record the quality of the **influent** waste stream to the facility according to the following schedule and other provisions:

Parameter	Minimum Frequency of Analysis	Sample Type
BOD ₅	Monthly	24-Hour Composite
Total Suspended Solids	Monthly	· 24-Hour Composite
Total Solids	Monthly	24-Hour Composite
Ammonia Nitrogen	Monthly	24-Hour Composite

EFFLUENT:

The permittee shall monitor and record the quality and quantity of **effluent** according to the following schedule and other provisions:

Parameter	Minimum Frequency of Analysis	Sample Type
Flow	Daily	Meter reading Report: Min – Max -
		Average
pH	Daily	Grab
Total Suspended Solids	Monthly	24-Hour Composite
Oil & Grease	Monthly	Grab
BOD5	Monthly	24-Hour Composite
Nitrate Nitrogen	Monthly	24-Hour Composite
Total Nitrogen (NO ₂ + NO ₃ + TKN)	Monthly	24-Hour Composite
Total Phosphorus (as P)	Annually	Grab
Orthophosphate (as P)	Annually	Grab

Volatile Organic Compounds ¹	Annually	Grab	
1			

¹USEPA Method #624

- a) The Department reserves the right to resume more frequent monitoring of phosphorus if the Department determines that phosphorus levels are impacting downgradient receptors.
- 2) The permittee shall sample the four approved monitoring wells (MW-3 upgradient, MW-1, MW-2, and MW-4 downgradient) as shown on a plan prepared by IEP Inc. and titled "Figure 2, Schematic Site Plan, Windchime Point, Mashpee, Massachusetts" dated April 1990. Labels identifying each monitoring well's identification in accordance with the above-referenced approved plan shall be affixed to the steel protective casing of each monitoring well.

The permittee shall monitor, record and report the quality of water in the monitoring wells according to the following schedule and other provisions:

Frequency of Analysis
Monthly
Monthly
Monthly
Quarterly
Quarterly
Annually
Annually
Annually

¹USEPA Method #624

- a) Static Water Level shall be expressed as an elevation and shall be referenced to the surveyed datum established for the site. It shall be calculated by subtracting the depth to the water table from the surveyed elevation of the top of the monitoring well's PVC well casing/riser.
- b) The Department reserves the right to resume more frequent monitoring of phosphorus if the Department determines that phosphorus levels are impacting downgradient receptors.
- 3) Any grab sample or composite sample required to be taken less frequently than daily shall be taken during the period of Monday through Friday inclusive. All composite samples shall be taken over the operating day.

4)

- The permittee shall submit all monitoring reports within 30 days of the last day of the reporting month. Reports shall be on an acceptable form, properly filled and signed and shall be sent to the Department of Environmental Protection, Southeast Regional Office, 20 Riverside Drive, Lakeville, MA 02347, and to the Director of Wastewater Management Program, Department of Environmental Protection, Wastewater Management, One Winter Street, Boston, MA 02108, and to the Board of Health, 16 Great Neck Road North, Mashpee, Massachusetts 02349.
 - Submission of monitoring reports in electronic format is available through eDEP a. and serves as data submission to both the Regional and Boston offices. To register for electronic submission go to:
 - http://www.mass.gov/dep/service/compliance/edeponlf.htm

С. **Financial Assurance Mechanisms**

1) The permittee shall establish and maintain a financial assurance mechanism that provides for the continued availability of an immediate repair and replacement account. The immediate repair and replacement account shall contain adequate funds to correct any unanticipated problem immediately so that any disruption of operation is minimized, and a violation of the terms and conditions contained in the permit does not occur. To create an immediate repair and replacement account, the permittee shall deposit at least 25% of the estimated construction cost of the PWTF into an interest bearing escrow account in accordance with the financial assurance mechanism and 314 CMR 5.15.

> a) For purpose of the financial assurance mechanism requirement, the estimated construction cost of the wastewater treatment facility shall include the cost of constructing the wastewater treatment plant, collection system, associated mechanical equipment, but not including the land, ground and disposal area.

2) The permittee shall meet the obligation to establish the required financial assurance mechanism by using Department-approved form documents and shall submit said Department-approved form documents to the Department for its review and approval as follows:

> a) A permittee that constructs the wastewater treatment facility after the issuance of the Individual permit may submit the financial assurance mechanism(s) to the Department for its review and approval no later than ninety (90) days prior to the start-up (clear water test) of the facility. Such a permittee shall not operate the facility unless and until the Department has approved the required financial assurance mechanism, the financial assurance mechanism is in full force and effect, and the permittee has made all contributions required thirty (30) days prior to the start-up (clear water test) of the facility; or,

> b) A permittee with a wastewater treatment facility in existence prior to the submission of the individual permit renewal application may submit the financial assurance mechanism to the Department for its review and approval no later than ninety (90) days from the date of submission of the individual permit renewal application. Said permittee shall be in compliance with the provision of the

approved financial assurance mechanism requiring contributions to the immediate repair and replacement account no later than thirty (30) days prior to the date on which the renewal is issued.

- 3) The permittee shall maintain the current form documents evidencing the required financial assurance mechanism approved by the Department. The permittee shall perform all its obligations under the required financial assurance mechanism as approved by the Department.
- 4) Once established and funded, the permittee shall keep an amount equal to at least 25% of the estimated construction cost of the PWTF in the immediate repair and replacement account and shall replenish the account within 90 days of any disbursement.
- 5) On or before January 31st of each year, the permittee shall submit an annual financial report identifying the initial and current balance in the immediate repair and replacement account and confirming the continuing availability of the funds in said account for the purposes specified in the permit and 314 CMR 5.15. Said report shall be prepared in accordance with generally accepted accounting principles. Reports pertaining to the required financial assurance mechanism(s) shall be sent to the Wastewater Management Section Chief at the appropriate Regional Office.

D. Supplemental Conditions

- 1. The permittee shall notify the Department at least thirty (30) days in advance of the proposed transfer of ownership of the facility for which this permit is written. Said notification shall include a written agreement between the existing and new permittees containing a specific date for transfer of permit, responsibility, coverage and liability between them.
- 2. A staffing plan for the facility shall be submitted to the Department once every two years and whenever there are staffing changes. The staffing plan shall include the following components:
 - a. The operator(s)'s name(s), operator grade(s) and operator license number(s);
 - b. The number of operational days per week;
 - c. The number of operational shifts per week;
 - d. The number of shifts per day;
 - e. The required personnel per shift;
 - f. Saturday, Sunday and holiday staff coverage;
 - g. Emergency operating personnel
- 3. The permittee is responsible for the operation and maintenance of all sewers, pump stations, and treatment units for the permitted facility, which shall be operated and maintained under the direction of a properly certified wastewater operator.
- 4. Operation and maintenance of the proposed facility must be in accordance with 314 CMR 12.00, "Operation and Maintenance and Pretreatment Standards for Wastewater Treatment

6

Works and Indirect Discharges", and, 257 CMR 2.00, "Rules and Regulations for Certification of Operators of Wastewater Treatment Facilities".

- a. The facility has been rated (in accordance with 257 CMR 2.00), to be a Grade 4 facility. Therefore, the permittee shall provide for oversight by a Massachusetts Certified Wastewater Treatment plant operator (Chief Operator) Grade 4 or higher. The permittee will also provide for a backup operator who shall possess at least a valid Grade 3 license.
- b. The date and time of the operator's inspection along with the operator's name and certification shall be recorded in the log book on location at the treatment facility. All daily inspection logs consistent with the O&M Manual requirements shall be kept at the facility for a period of three (3) years.
- c. Records of operation of wastewater treatment facilities or disposal systems required by the Department shall be submitted on forms supplied by the Department or on other forms approved by the Department for such use. Monthly reports shall be certified by the wastewater treatment plant operator in charge and shall be included in the discharge monitoring reports submitted each month.
- 5. If the operation and maintenance of the facility is contracted to a private concern, the permittee shall submit a copy of the contract, consistent with what is required by the approved Operation & Maintenance manual and signed only by the contractor, to the appropriate MassDEP Regional Office within thirty (30) days of permit issuance. Along with the contract, a detailed listing of all contract operation obligations of the proposed contractor at other facilities shall also be submitted.
- 6. Any additional connections to the sewer system, beyond the facility as described on page 1 of this permit shall be approved by MassDEP and the local Board of Health prior to the connection.
- 7. All tests or analytical determinations to determine compliance with permit standards and requirements shall be done using tests and procedures found in the most recent version of *Standard Methods for the Examination of Water and Wastewater* and shall be performed by a Massachusetts Certified laboratory.
- 8. The permittee shall notify the appropriate MassDEP Regional Office, in writing, within thirty (30) days of the following events:
 - a. The date of treatment plant start up.
 - b. Any interruption of the treatment system operation, other than routine maintenance.
 - c. Final shutdown of the treatment system.
- 9. The permittee shall contract to have any and all solids and sludges generated by the treatment system for which this permit is issued removed off site by a properly licensed waste hauler for disposal at an EPA/MassDEP approved facility. The name and license number of the hauler along with the quantity of wastes removed and the date(s) of removal shall be reported by the permittee in writing to the appropriate MassDEP Regional Office.
- 10. Simultaneously with the permit renewal application at year fifteen (2021) following the initiation of plant operations, the permittee shall submit two reports to the Department for its review and approval:

- a. An engineering report, prepared by a registered professional engineer, that outlines in sufficient detail what modifications (if any) to the facility or other changes are required to insure that the facility can remain in compliance with its GWDP and other applicable requirements through the next 5 year permit term (year 2026) and beyond; and
- b. A financial plan that contains the cost estimates for implementing the facility modifications or other changes identified in the engineering report, and describes and demonstrates, how and when the permittee will finance the needed facility modifications or other changes.
- 11. In the event that effluent limits are not met, or the discharge is determined to impair groundwater quality in accordance with 314 CMR 5.16(1), the permittee may be obligated to modify, supplement or replace the permitted treatment process so as to ensure that the discharge does not impair the ability of the groundwater to act as an actual or potential source of potable water.
- 12. Pursuant to M.G.L. Chapter 21A, section 18(a), and 310 CMR 4.03, holders of this Permit may be subject to annual compliance assurance fees as assessed each year on July 1st and invoiced by MassDEP. Failure of the Permit holder to pay applicable annual compliance assurance fees shall result in the automatic suspension of the permit by operation of law under the statute. If fee non-payment continues for sixty days or more, MassDEP has the statutory option of revoking the Permit, denying any other pending permit applications filed by the Permit holder or taking other enforcement action. Permit holders are required to notify MassDEP in writing if they wish to relinquish or transfer a permit. Failure to do so will result in the continued assessment of fees.

E. Appeal Rights

During the thirty (30) day period following issuance of this permit, a Notice of Claim for an Adjudicatory Appeal may be sent by any person aggrieved (the "Petitioner") by the issuance to:

Case Administrator Office of Appeals and Dispute Resolution Department of Environmental Protection One Winter Street/2nd Floor Boston, MA 02108

310 CMR 1.01(6)(b) requires the Notice of Claim to: include sufficient facts to demonstrate aggrieved person status; state the facts which are grounds for the appeal specifically, clearly and concisely; and, state relief sought. The permit shall become or remain effective at the end of the 30 day appeal period unless the person filing the Notice of Claim requests, and is granted, a stay of its terms and conditions. If a permit is modified under 314 CMR 2.10, only the modified terms and conditions may be subject to an Adjudicatory Appeal. All other aspects of the existing permit shall remain in effect during any such Adjudicatory Appeal.

Per 310 CMR 4.06, the hearing request to the Commonwealth will be dismissed if the filing fee is not paid. Unless the Petitioner is exempt or granted a waiver, a valid check payable to the Commonwealth to Massachusetts in the amount of \$100.00 must be mailed to:

Commonwealth of Massachusetts Department of Environmental Protection P.O. Box 4062 Boston, MA 02211

The filing fee is not required if the Petitioner is a city, town, county, or district of the Commonwealth, federally recognized Indian tribe housing authority effective January 14, 1994, or any municipal housing authority; or, per MGL 161A s. 24, the Massachusetts Bay Transportation Authority. The Department may waive the adjudicatory hearing filing fee for a Petitioner who shows that paying the fee will create and undue financial hardship. A Petitioner seeking a waiver must file, along with the hearing request, an affidavit setting forth the facts believed to support the claim of undue financial hardship.

II. GENERAL PERMIT CONDITIONS

The following conditions apply to all individual and general permits:

(1) No discharge authorized in the permit shall cause or contribute to a violation of the Massachusetts Surface Water Quality Standards (314 CMR 4.00) or any amendments thereto. Upon promulgation of any amended standard, this permit may be revised or amended in accordance with such standard and 314 CMR 2.10 and 3.13 or 5.12. Except as otherwise provided in 314 CMR 5.10 (3)(c), 310 CMR 5.10(4)(a)2 and 314 CMR 5.10(9), no discharge authorized in the permit shall impair the ability of the ground water to act as an actual or potential source of potable water. Evidence that a discharge impairs the ability of the ground water to act as an actual or potential source of potable water includes, without limitation, analysis of samples taken in a downgradient well that shows one or more exceedances of the applicable water quality based effluent limitations set forth in 314 CMR 5.10. In those cases where it is shown that a measured parameter exceeds the applicable water quality based effluent limitations set forth in 314 CMR 5.10 at the upgradient monitoring well, evidence that a discharge impairs the ability of the ground water to act as an actual or potential source of potable water is deemed to exist if a measured parameter in any downgradient well exceeds the level of that same measured parameter in the upgradient well for the same sampling period. . A statistical procedure approved by the Department shall be used in determining when a measured parameter exceeds the allowable level.

(2) <u>Duty to comply</u>. The permittee shall comply at all times with the terms and conditions of the permit, 314 CMR 5.00, M.G.L. c. 21, §§ 26 through 53 and all applicable state and federal statutes and regulations.

(3) <u>Standards and prohibitions for toxic pollutants</u>. The permittee shall comply with effluent standards or prohibitions established under § 307(a) of the Federal Act, 33 U.S.C § 1317(a), for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

(4) <u>Proper operation and maintenance</u>. The permittee shall at all times properly operate and maintain all facilities and equipment installed or used to achieve compliance with the terms and conditions of the permit, and the regulations promulgated at 314 CMR 12.00 entitled "Operation

and Maintenance and Pretreatment Standards for Wastewater Treatment Works and Indirect Discharges, and 257 CMR 2.00, Rules and Regulations for Certification of Operators of Wastewater Treatment Facilities".

(5) <u>Duty to halt or reduce activity</u>. Upon reduction, loss, or failure of the treatment facility, the permittee shall, to the extent necessary to maintain compliance with its permit, control production or discharges or both until the facility is restored or an alternative method of treatment is provided. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.

(6) <u>Power Failure</u>. In order to maintain compliance with the effluent limitations and prohibitions of this permit, the permittee shall either:

(a) provide an alternative power source sufficient to operate the wastewater control facilities; or

(b) halt, reduce or otherwise control production and/or all discharges upon the reduction, loss, or failure of the primary source of power to the wastewater control facilities.

(7) <u>Duty to mitigate</u>. The permittee shall take all reasonable steps to minimize or prevent any adverse impact on human health or the environment resulting from non-compliance with the permit.

(8) <u>Duty to provide information</u>. The permittee shall furnish to the Department within a reasonable time as specified by the Department any information which the Department may request to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit, or to determine whether the permittee is complying with the terms and conditions of the permit.

(9) <u>Inspection and entry</u>. The permittee shall allow the Department or its authorized representatives to:

(a) Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records required by the permit are kept;

(b) Have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit;

(c) Inspect at reasonable times any facilities, equipment, practices, or operations regulated or required under the permit; and

(d) Sample or monitor at reasonable times for the purpose of determining compliance with the terms and conditions of the permit.

(9A) The permittee shall physically secure the treatment works and monitoring wells and limit access to the treatment works and monitoring wells to those personnel required to operate, inspect and maintain the treatment works and to collect samples.

(9B) The permittee shall identify each monitoring well by permanently affixing to the steel protective casing of the well a tag with the identification number listed in the permit.

(10) <u>Monitoring</u>. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. Monitoring must be conducted according to test

procedures approved under 40 CFR Part 136 unless other test procedures are specified in the permit.

(11) <u>Recordkeeping</u>. The permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by the permit, and all records of all data used to complete the application for the permit, for a period of at least three years from the date of the sample, measurement, report or application. This period may be extended by request of the Department at any time. Records of monitoring information shall include:

(a) The date, exact place, and time of sampling or measurements;

(b) The individual(s) who performed the sampling or measurement;

(c) The date(s) analyses were performed;

(d) The individual(s) who performed the analyses;

(e) The analytical techniques or methods used; and

(f) The results of such analyses.

(12) <u>Prohibition of bypassing</u>. Except as provided in 314 CMR 5.16(13), bypassing is prohibited, and the Department may take enforcement action against a permittee for bypassing unless:

(a) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;

(b) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if the permittee could have installed adequate backup equipment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and

(c) The permittee submitted notice of the bypass to the Department:

1. In the event of an anticipated bypass, at least ten days in advance, if possible; or

2. In the event of an unanticipated bypass, as soon as the permittee has knowledge of the bypass and no later than 24 hours after its first occurrence.

(13) <u>Bypass not exceeding limitations</u>. The permittee may allow a bypass to occur which does not cause effluent limitations to be exceeded, but only if necessary for the performance of essential maintenance or to assure efficient operation of treatment facilities.

(14) <u>Permit actions</u>. The permit may be modified, suspended, or revoked for cause. The filing of a request by the permittee for a permit modification, reissuance, or termination, or a notification of planned changes or anticipated non-compliance does not stay any permit condition.

(15) <u>Duty to reapply</u>. If the permittee wishes to continue an activity regulated by the permit after the expiration date of the permit, the permittee must apply for and obtain a new permit. The permittee shall submit a new application at least 180 days before the expiration date of the existing permit, unless permission for a later date has been granted by the Department in writing.

(16) <u>Property rights</u>. The permit does not convey any property rights of any sort or any exclusive privilege.

(17) <u>Other laws.</u> The issuance of a permit does not authorize any injury to persons or property or invasion of other private rights, nor does it relieve the permittee of its obligation to comply with any other applicable Federal, State, and local laws and regulations.

(18) <u>Oil and hazardous substance liability</u>. Nothing in the permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee is or may be subject under § 311 of the Federal Act, 33 U.S.C. § 1321, and M.G.L. c. 21E.

(19) <u>Removed substances</u>. Solids, sludges, filter backwash, or other pollutants removed in the course of treatment or control of wastewaters shall be disposed in a manner consistent with applicable Federal and State laws and regulations including, but not limited to, the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26 through 53 and the Federal Act, , 33 U.S.C. § 1251 *et seq*, the Massachusetts Hazardous Waste Management Act, M.G.L. c. 21C, and the Federal Resource Conservation and Recovery Act, 42 U.S.C. § 6901, *et seq.*, 310 CMR 19.000 and 30.000, and other applicable regulations.

(20) <u>Reporting requirements</u>.

(a) <u>Monitoring reports.</u> Monitoring results shall be reported on a Discharge Monitoring Report (DMR) at the intervals specified elsewhere in the permit. If the permittee monitors any pollutant more frequently than required by the permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR.
(b) <u>Compliance schedules</u>. Reports of compliance or non-compliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date.
(c) <u>Planned changes</u>. The permittee shall give notice to the Department as soon as possible of any planned physical alterations or additions to the permitted facility or activity which could significantly change the nature or increase the quantity of pollutants discharged. Unless and until the permit is modified, any new or increased discharge in excess of permit limits or not specifically authorized by the permit constitutes a violation.
(d) <u>Anticipated non-compliance</u>. The permittee shall give advance notice to the Department of any planned changes in the permittee facility or activity which may result in non-compliance with permit requirements.

(e) <u>24 hour reporting</u>. The permittee shall report any non-compliance which may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within five days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the non-compliance, including exact dates and times, and if the non-compliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the non-compliance. The following shall be included as information which must be reported within 24 hours:

1. Any unanticipated bypass which exceeds any effluent limitation in the permit.

2. Violation of a maximum daily discharge limitation for any of the pollutants listed by the Department in the permit to be reported within 24 hours.

(f) <u>Other non-compliance</u>. The permittee shall report all instances of non-compliance not reported under 314 CMR 5.16(20)(a), (b), or (e) at the time monitoring reports are submitted. The reports shall contain the information listed in 314 CMR 5.16(20)(e).

(g) <u>Toxics.</u> All manufacturing, commercial, mining, or silvicultural dischargers must notify the Department as soon as they know or have reason to believe:

1. That any activity has occurred or will occur which would result in the discharge of any toxic pollutant listed in 314 CMR 3.17 which is not limited in the permit, if that discharge will exceed the highest of the following notification levels:

a. 100 micrograms per liter (100 ug/l);

b. 200 micrograms per liter (200 ug/l) for acrolein and acrylonitrile; 500 micrograms per liter (500 ug/l) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/l) for antimony;

c. Five times the maximum concentration value reported for that pollutant in the permit application; or

2. That they have begun or expect to begin to use or manufacture as an intermediate or final product or byproduct any toxic pollutant which was not reported in the permit application.

(h) <u>Indirect dischargers</u>. All Publicly Owned Treatment Works shall provide adequate notice to the Department of the following:

1. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to § 301 or 306 of the Federal Act, 33 U.S.C. § 1311 or 1316, if it were directly discharging those pollutants; and

2. Any substantial change in the volume or character of pollutants being introduced into the POTW by a source introducing pollutants into the POTW at the time of issuance of the permit.

(i) <u>Information</u>. Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Department, it shall promptly submit such facts or information.

(21) <u>Signatory requirement</u>. All applications, reports, or information submitted to the Department shall be signed and certified in accordance with 314 CMR 3.15 and 5.14.

(22) <u>Severability</u>. The provisions of the permit are severable, and if any provision of the permit, or the application of any provision of the permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of the permit, shall not be affected thereby.

(23) <u>Reopener clause</u>. The Department reserves the right to make appropriate revisions to the permit in order to establish any appropriate effluent limitations, schedules of compliance, or other provisions which may be authorized under the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26 through 53 or the Federal Act, 33 U.S.C. §1251 *et seq* in order to bring all discharges into compliance with said statutes.

(24) <u>Approval of treatment works</u>. All discharges and associated treatment works authorized herein shall be consistent with the terms and conditions of this permit. Any modification to the approved treatment works shall require written approval of the Department prior to the construction of the modification.

(25) Transfer of Permits.

(a) RCRA facilities. Any permit which authorizes the operation of a RCRA facility which is subject to the requirements of 314 CMR 8.07 shall be valid only for the person to whom it is issued and may not be transferred.

(b) Transfers by modification. Except as provided in 314 CMR 5.16(25)(a) and (c), a permit may be transferred by the permittee to a new owner or operator provided that the permit has been modified or revoked and reissued or a minor modification is made to identify the new permittee in accordance with 314 CMR 5.12(3) and (4).

(c) Automatic transfers. For facilities other than Privately Owned Wastewater Treatment Facilities (PWTFs) that treat at least some sewage from residential uses, hospitals, nursing or personal care facilities, residential care facilities, and/or assisted living facilities, PWTFs that have been required to establish financial assurance mechanism(s) pursuant to 314 CMR 5.15(6), and RCRA facilities subject to the requirements of 314 CMR 8.07, a permit may be automatically transferred in accordance with 314 CMR 5.12(5).

(26) <u>Permit Compliance Fees and Inspection Information</u>. Except as otherwise provided, any permittee required to obtain a surface water or ground water discharge permit pursuant to M.G.L. c. 21, § 43 and 314 CMR 3.00 and 5.00, shall be required to submit the annual compliance assurance fee established in accordance with M.G.L. c. 21A, § 18 and 310 CMR 4.00 as provided in 314 CMR 2.12. The requirement to submit the annual compliance fee does not apply to any local government unit other than an authority. Any permittee required to obtain a surface water or ground water discharge permit pursuant to M.G.L. c. 21, §43 and 314 CMR 3.00 and 5.00 may be required to submit inspection information annually as a condition of the permit as provided in 314 CMR 2.12.

P:\12\263 - 3M1 - Mashpee - Windchime Condominium.docx

14

Massachusetts Department of Environmental Protection One Winter Street, Boston MA 02108 • Phone: 617-292-5751 Communication For Non-English Speaking Parties - 310 CMR 1.03(5)(a)

1 English:

This document is important and should be translated immediately. If you need this document translated, please contact MassDEP's Diversity Director at the telephone numbers listed below.

2 Español (Spanish):

Este documento es importante y debe ser traducido inmediatamente. Si necesita este documento traducido, por favor póngase en contacto con el Director de Diversidad MassDEP a los números de teléfono que aparecen más abajo.

3 Português (Portuguese):

Este documento é importante e deve ser traduzida imediatamente. Se você precisa deste documento traduzido, por favor, entre em contato com Diretor de Diversidade da MassDEP para os números de telefone listados abaixo.

4(a) 中國(傳統)(Chinese (Traditional):

本文件非常重要,應立即翻譯。如果您需要翻譯這份文件,請用下面列出的電話號碼與MassD EP的多樣性總監聯緊。

4(b) 中国(简体中文)(Chinese (Simplified):

本文件非常重要,应立即翻译。如果您需要翻译这份文件,请用下面列出的电话号码与MassD EP的多样性总监联系。

5 Ayisyen (franse kreyòl) (Haitian) (French Creole):

Dokiman sa-a se yon bagay enpòtan epi yo ta dwe tradui imedyatman. Si ou bezwen dokiman sa a tradui, tanpri kontakte Divèsite Direktè MassDEP a nan nimewo telefòn ki nan lis pi ba a.

6 Việt (Vietnamese):

Tài liệu này là rất quan trọng và cần được dịch ngay lập tức. Nếu bạn cần dịch tài liệu này, xin vui lòng liên hệ với Giám đốc MassDEP đa dạng tại các số điện thoại được liệt kê dưới đây.

7 ប្រទេសកម្ពុជា (Kmer (Cambodian):

ឯកសារនេះគឺមានសារៈសំខាន់និងកួរត្រូវបានបកប្រែភ្លាម។ ប្រសិនបើអ្នកត្រូវបានបកប្រែ ឯកសារនេះសូមទំនាក់ទំនងឆ្នោតជានាយក MassDEP នៅលេខទូរស័ព្ទដែលបានរាយខាងក្រោម។

8 Kriolu Kabuverdianu (Cape Verdean):

Es documento é importante e deve ser traduzido imidiatamente. Se bo precisa des documento traduzido, por favor contacta Director de Diversidade na MassDEP's pa es numero indicode li d'boche.

9 Русский язык (Russian):

Этот документ должен быть немедленно. Если вам нужна помощь при переводе, свяжитесь пожалуйста с директором по этике и разнообразие в MassDEP по телефону указанному ниже.

Contact Michelle Waters-Ekanem, Diversity Director/Civil Rights: 617-292-5751 TTY# MassRelay Service 1-800-439-2370. <u>http://www.mass.gov/eea/agencies/massdep/service/justice/</u> (Version 1.9.17)

:(Arabic) العربية 10

هذه الوثيقة الهامة وينبغي أن تترجم على الفور. اذا كنت بحاجة الى هذه الوثيقة المترجمة، يرجى الاتصال مدير التنوع في الهذه الوثيقة المامة وينبغي أن تترجم على الفور. اذا كنت بحاجة الدناه. طل MassDEP على أرقام الهواتف المدرجة أدناه.

11 한국어 (Korean):

이 문서는 중요하고 즉시 번역해야합니다. 당신이 번역이 문서가 필요하면 아래의 전화 번호로 MassDEP의 다양성 감독에 문의하시기 바랍니다.

12 hujtpth (Armenian):

Այս փաստաթուղթը շատ կարեւոր է եւ պետք է թարգմանել անմիջապես. Եթե Ձեզ անհրաժեշտ է այս փաստաթուղթը թարգմանվել դիմել MassDEP բազմազանությունը տնօրեն է հեռախոսահամարների թվարկված են ստորեւ.

(Farsi [Persian]): فارسى 13

این سند مهم است و باید فور ا ترجمه شده است.

اگر شما نیاز به این سند ترجمه شده، اطفا با ما تماس تنوع مدیر MassDEP در شماره تلفن های ذکر شده در زیر

14 Français (French):

Ce document est important et devrait être traduit immédiatement. Si vous avez besoin de ce document traduit, s'il vous plaît communiquer avec le directeur de la diversité MassDEP aux numéros de téléphone indiqués ci-dessous.

15 Deutsch (German):

Dieses Dokument ist wichtig und sollte sofort übersetzt werden. Wenn Sie dieses Dokument übersetzt benötigen, wenden Sie sich bitte Diversity Director MassDEP die in den unten aufgeführten Telefonnummern.

16 Ελληνική (Greek):

Το έγγραφο αυτό είναι σημαντικό και θα πρέπει να μεταφραστούν αμέσως. Αν χρειάζεστε αυτό το έγγραφο μεταφράζεται, παρακαλούμε επικοινωνήστε Diversity Director MassDEP κατά τους αριθμούς τηλεφώνου που αναγράφεται πιο κάτω.

 $\mathbf{\tilde{\bullet}}$

17 Italiano (Italian):

Questo documento è importante e dovrebbe essere tradotto immediatamente. Se avete bisogno di questo documento tradotto, si prega di contattare la diversità Direttore di MassDEP ai numeri di telefono elencati di seguito.

18 Język Polski (Polish):

Dokument ten jest ważny i powinien być natychmiast przetłumaczone. Jeśli potrzebujesz tego dokumentu tłumaczone, prosimy o kontakt z Dyrektorem MassDEP w różnorodności na numery telefonów wymienionych poniżej.

📕 यह दस्तावेज महत्वपूर्ण है और तुरंत अनुवाद किया जाना चाहिए. आप अनुवाद इस दस्तावेज़ की जरूरत है, नीचे सूचीबद्ध फोन नंबरों पर MassDEP की विविधता निदेशक से संपर्क करें.

Contact Michelle Waters-Ekanem, Diversity Director/Civil Rights: 617-292-5751 TTY# MassRelay Service1-800-439-2370 <u>http://www.mass.gov/cea/agencies/massdep/service/justice/</u> (Version 1.9.17) .